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Chapter 1

Introduction

This is the �nal report for the NASA funded project NAG-1-1184 entitled \Crack
Growth Prediction Methodology for Multi-Site Damage." The primary objective of
the project was to create a capability to simulate curvilinear fatigue crack growth
and ductile tearing in aircraft fuselages subjected to widespread fatigue damage.
The second objective was to validate the capability by way of comparisons to ex-
perimental results. Both objectives have been achieved and the results are detailed
herein. The body of this report is derived primarily from the Ph.D. thesis of the
�rst author [19].

1.1 Overview

Modern aircraft structures are designed using a damage tolerance philosophy. This
design philosophy envisions su�cient strength and structural integrity of the air-
craft to sustain major damage and to avoid catastrophic failure. However, struc-
tural aging of the aircraft may signi�cantly reduce the strength below an acceptable
level; this raises many important safety issues.

Concerns about aging aircraft are reinforced by the in-
ight structural failure
of an Aloha Airlines Boeing 737 on April 28, 1988 [97]. The failure precipitated
from the link-up of small fatigue cracks extending from adjacent rivet holes in a
fuselage lap-splice joint. This caused approximately 18 feet of the upper crown
skin and structure to separate from the fuselage (see Figures 1.1 and 1.2). The
1988 Aloha Airlines accident created a revolution in the aircraft community. The
problems associated with aging aircraft have to be quanti�ed and the methodology
to ensure the structural integrity of airplanes has to be reassessed [5].

One of the most notable problems in aging aircraft is widespread fatigue damage
(WFD) de�ned in [139] as \the simultaneous presence of fatigue cracks at multi-
ple structural details that are of su�cient size and density whereby the structure
will no longer meet its damage tolerance requirement." In response to such aging
aircraft problems, the National Aeronautics and Space Administration (NASA) ini-
tiated an Airframe Structural Integrity Program (ASIP) [52, 95, 53, 54] to develop

1
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Figure 1.1: 1988 Aloha Airlines accident (aircraft after landing).

Figure 1.2: 1988 Aloha Airlines accident{the shaded area illustrates the part of
fuselage lost at cruising altitude.
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an advanced analysis methodology for predicting structural integrity and residual
strength1 of fuselage structures with WFD. The analysis methodology would al-
low engineers to maintain the aging 
eet economically while insuring continuous
airworthiness.

The work described in this thesis is part of the ASIP program. The main
objective of this work is to develop a computational analysis methodology to sim-
ulate realistic crack growth and to predict remaining life and residual strength of
complex built-up structures. While the methodology developed is generic in na-
ture, the particular focus is on fuselage structural integrity where WFD is likely
to occur as the 
eet grows older. The analysis methodology will help to determine
service inspection intervals, quantitatively evaluate inspection �ndings, and design
and certify damage-tolerant structural repairs. Thus, the outcome will improve
the technology to support the safe operation of the current 
eet and the design of
more damage-tolerant aircraft for the next-generation 
eet.

1.2 Background 1: Structural Integrity of Fuse-

lage Structures

A general overview of the structural integrity of a pressurized fuselage with cracks
is provided as background material for the thesis. In particular, the following issues
are discussed:

� concerns about WFD related to the loss of residual strength,

� the characterization of WFD in riveted fuselage structures,

� typical life of aircraft structures and the dominant behavior of cracks, and
�nally

� the analysis methodology described in this thesis to evaluate the structural
integrity of damaged structures.

1.2.1 WFD in Fuselage Structures

The philosophy of damage tolerance presumes that any damage initiated by fatigue,
accident, or corrosion will be found before catastrophic failure [138]. The safety
of the aircraft heavily depends upon �nding cracks before they reach a critical
length. The occurrence of WFD, however, drastically reduces the residual strength
or decreases the critical crack size as illustrated in Figure 1.3. The loss of residual
strength in the presence of WFD has raised great safety concerns for aging aircraft.

1Residual strength is the maximum load carrying capacity of a damaged struc-
ture.
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Figure 1.3: Illustration of e�ect of WFD on residual strength and critical crack
size.

To establish the characteristics of WFD in fuselage riveted structures, Piascik
et al. [105] and Harris et al. [54] conducted teardown fractographic examinations
of aircraft components. A four bay section of a Boeing 747 fuselage containing
a longitudinal lap splice joint was examined after conducting a full-scale fatigue
test with 60,000 full pressurization cycles; this is about three times the original
economic design life of the aircraft. Several observations were made from detailed
non-destructive and destructive examinations of each rivet hole:

1. crack initiation mechanisms included high local stresses, fretting along mat-
ing surfaces, and manufacturing defects created during the riveting process;

2. fatigue cracks were present at virtually every rivet hole in the upper row of
the lap joint;

3. the lengths of all of the fatigue cracks at link-up were approximately the
same.

The last observation implies that as long as the crack has extended a consider-
able distance from the rivet head, the crack growth behavior is somewhat indepen-
dent of the initiating mechanism. Thus, the typical life of aircraft structures can
be subdivided into the nucleation and crack growth periods as shown in Figure 1.4.
The nucleation period heavily depends on micro-structural details of the material.
The microscopic studies provide fundamental understanding and phenomenological
criteria for fatigue and fracture used in macro-scale applications. Regardless of the
initiation mechanism, fracture mechanics is adequate to describe the macrocrack
behavior for practical problems. The methodology developed herein is intended
for the macro-scale and it is the crack growth period that is of primary interest.



5

and 

final failure

stable crack growth

initiation fatigue crack growth

nucleation period crack growth period

Figure 1.4: Illustration of typical life of aircraft structures.

1.2.2 Crack Growth in Thin Sheet Metals

In general, crack growth in thin, ductile materials used in aircraft fuselages is likely
to experience fatigue and stable crack growth before the occurrence of fast frac-
ture and �nal failure. Fatigue is a process of cumulative damage that is caused
by repeated 
uctuating loads. Fatigue crack propagation can be characterized by
a crack growth-rate model that predicts the number of loading cycles required to
propagate a fatigue crack to a critical size. Stress intensity factors (SIFs) un-
der fatigue loading are below the critical value for quasi-static or unstable crack
propagation. Under such circumstance, linear elastic fracture mechanics (LEFM)
su�ces to characterize the crack growth-rate model. Stable crack growth and �nal
failure generally occur at the very last loading cycle of the life of aircraft. Crack
propagation at this stage involves elastic-plastic stable tearing followed by fast-
fracture. Since crack growth is no longer under small-scale yielding conditions,
elastic-plastic fracture mechanics (EPFM) is needed to characterize the fracture
behavior and to predict the residual strength.

1.2.3 Bulging in Pressurized Thin Shell Structures

For cracks in a pressurized fuselage, the out-of-plane deformation or bulging at
crack edges is an essential characteristic feature of the displacement �elds. Fol-
lowing Potyondy et al. [108], the dominant factors that a�ect the behavior of
through-cracks in the skin of pressurized fuselages are:

1. a geometrically nonlinear sti�ening e�ect that restricts the crack edge bulging,

2. the presence of sti�ening elements that alter the stress distribution in the
skin,

3. the internal pressure and the mechanical loads that act on the structure, and

4. plasticity e�ects.

All the factors described above are taken into consideration in developing the
analysis methodology in this work. The following general guidelines are used to
characterize crack growth and to evaluate fuselage structural integrity:
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� For fatigue crack growth, use thin shell analyses with geometric nonlinearity
to evaluate SIFs for shells under membrane and bending loading. The SIFs
are then used to evaluate crack growth-rate.

� For stable crack growth, use thin shell analyses with geometric and material
nonlinearity to evaluate crack tip opening angle (CTOA). The critical CTOA
is then used to control the crack advancement. Structural integrity and
residual strength are then evaluated based on the predicted results of elastic-
plastic crack growth simulations.

1.3 Background 2: Computational Issues for Crack

Growth Simulation

To simulate realistic crack growth where crack trajectories are not known a priori,
continual updating of the geometry is required. This feature makes conventional
programs for computational solid mechanics di�cult to use, if used alone. In this
section, a brief overview of the main computational issues for arbitrary, discrete
crack growth simulations is provided. Key aspects of the high-level description of
the implementation to make the crack growth simulations e�cient are presented2.

Discrete crack growth simulation is an incremental process, where a series of
steps is repeated for a progression of models. The process continues until a suitable
termination condition is reached. Results of such a simulation might include one or
more of the following: a �nal crack geometry, a loading versus crack size history,
a crack opening pro�le, or a history of the crack-front fracture parameters. In
general, each increment in the process relies on previously computed results and
represents one crack con�guration. Following Carter et al. [17, 18], data in each
crack growth increment can be divided into: representation database (Ri, where
the subscript denotes the increment number), analysis database (Ai), equilibrium
database (Ei), and fracture parameter database (Fi). Each simulation of crack
growth increment involves three major processes, a discretization process (D), a
solution process (S), and an update process (U). The sequence of operations is
illustrated in Figure 1.5. A discretization process, D, primarily consisting of a
meshing function, M, transforms a representational description of a cracked body
to a discrete model suitable for stress analysis. A solution process, S, computes
unknown �eld variables, Ei, and fracture parameters, Fi. An update process, U,
takes the equilibrium state �eld variables and the existing representation, using
a function that predicts crack shape evolution, C, creates a new representational
database. The major problem in using conventional programs alone to simulate

2It is not the intent of the author to describe details of computational issues
about arbitrary crack growth, but instead present a broad background and a de-
parture point to introduce the software written and developed as part of this thesis.
The readers are referred to [143, 17, 18] for more detailed and in-depth discussion.
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Figure 1.5: Illustration of the sequence of operations on databases and processes
involved in each crack growth increment.

discrete crack growth is that they are ill-suited for tracking geometry changes that
accompany crack growth unless the growth is constrained to be along existing
element edges or faces. For general cases, where crack trajectories are not known
a priori, a general representational model provides the key to e�ciently handle
crack growth simulations.

1.4 FRANC3D/STAGS Software Environment

A software system FRANC3D/STAGS that incorporates the conceptual crack
growth model described above to support the analysis methodology in evaluating
structural integrity of aging aircraft is developed. The system combines a topology
based program, FRANC3D (FRacture ANalysis Code for 3D solids and shells), and
a general nonlinear shell �nite element program, STAGS (STructual Analysis of
General Shells). FRANC3D has been under development by the Cornell Fracture
Group since the late 1980s. The aim is a systematic representational model for
arbitrary crack growth analysis. The key concepts embodied in FRANC3D are:

� solid modeling tools,

� a topological data structure that separates topology from geometry,

� the association of model attributes with topological entities, and
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� a hierarchy of topological models to organize and guide the discretization
process.

The representational model in FRANC3D is well-suited for tracking the geom-
etry changes that accompany crack growth. The task of updating the representa-
tional model and generating a sequence of analysis models is separated from the
task of performing an analysis on a particular model. For the FRANC3D/STAGS
software, the analyses are performed by the STAGS code.

STAGS is a �nite element code for general-purpose analysis of shell structures
developed by Lockheed-Martin's Advanced Technology Center [113]. The main
analysis capabilities in STAGS are:

� linear elastic stress analysis,

� geometrically and materially nonlinear stress analysis,

� linear bifurcation buckling analysis, and

� transient response analysis.

The FRANC3D/STAGS software �rst developed by Potyondy [106] is further
modi�ed by the author to support the evolving analysis methodology for evaluating
structural integrity of aircraft structures.

The software components of FRANC3D/STAGS necessary to perform arbitrary
crack growth simulation are illustrated in Figure 1.6. The FRANC3D code con-
trols the entire process, allowing the analyst to compute the equilibrium states for
a series of structural con�gurations. The STAGS code performs the stress analy-
sis. Finally, an interface program is written to facilitate the data communication
between the two codes.

1.5 Organization of the Dissertation

The primary objective of the dissertation is to develop an accurate structural
analysis methodology and a useful and usable software program for predicting the
structural integrity and residual strength of fuselage structures. The dissertation
is divided into two parts: (1) elastic-plastic crack growth analyses and residual
strength prediction with self-similar crack growth, Chapters 2{4; and (2) crack
trajectory prediction with non-self-similar, curvilinear crack growth, Chapters 5{
7.

Chapter 2 reviews and critiques various fracture mechanics methods for sim-
ulating elastic-plastic crack growth and predicting residual strength of thin-sheet
metallic structures. Among the methods, the CTOA fracture criterion is found
to be superior due to its relative independence of the geometry of the structure,
the length of the crack, and the presence of multiple cracks. The concepts and
formulations of the CTOA criterion are presented. Elastic-plastic crack growth,
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Figure 1.6: The FRANC3D/STAGS software components, their primary functions,
and their interactions necessary to perform arbitrary crack growth sim-
ulation (modi�ed after [106]).
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link-up of multiple cracks, and residual strength analyses using the CTOA fracture
criterion are discussed.

Chapters 3 and 4 describe �nite element analyses of fracture tests using the
CTOA fracture criterion. Elastic-plastic crack growth simulations and residual
strength prediction of fracture coupon tests and full-scale fuselage panel tests are
presented. In Chapter 3, fracture behavior in coupon tests including middle-crack
tension (MT) and multiple crack specimens is analyzed. In Chapter 4, fracture
behavior in full-scale narrow body and wide body panel tests is analyzed. Possible
scenarios that can occur in pressurized fuselages are examined, including lead crack
growth, multi-site damage, multiple crack interaction, plastic wake from fatigue
crack growth, tear strap failure, and corrosion damage.

Chapters 5 through 7, the second part of the dissertation, consist of mate-
rial related to crack trajectory prediction. An evolving methodology to improve
structural integrity of aircraft structures using the crack turning phenomenon is
discussed.

Chapter 5 reviews and critiques various crack growth directional criteria for
crack trajectory prediction. A directional criterion based on the maximum tan-
gential stress theory, but taking into account the e�ect of T -stress and fracture
toughness orthotropy is developed. In Chapter 6, the path independent contour
integral method for T -stress evaluation is presented. The numerical accuracy using
the path independent integral is assessed by highly accurate two-dimensional p-
and hp-version adaptive �nite element analyses. Chapter 7 analyzes curvilinear
crack growth in coupon tests and in full-scale narrow body fuselage panel tests.
The T -stress and fracture toughness orthotropy e�ect on crack trajectory predic-
tion is examined.

The �nal chapter summarizes the contributions of this thesis, draws conclu-
sions, and where appropriate, provides recommendations for future work.



Chapter 2

Theory for CTOA-Driven

Elastic-Plastic Crack Growth and

Residual Strength Analysis

This chapter together with Chapters 3 and 4 gives a comprehensive treatise on us-
ing the crack tip opening angle (CTOA) fracture criterion to predict elastic-plastic
crack growth and residual strength of thin-sheet metallic structures. Theories, con-
cepts, and formulations related to the CTOA-driven fracture criterion are given in
this chapter. Elastic-plastic crack growth simulations and residual strength pre-
diction of coupon tests and full-scale fuselage panel tests are presented in the next
two chapters.

2.1 Introduction

To predict successfully fracture behavior and residual strength of aircraft fuselage
structures subjected to widespread fatigue damage (WFD), a fracture criterion
independent of the geometry of the structure, the length of the crack, and the
presence of multi-site damage (MSD) is required [29]. In this chapter, a brief
evaluation of various fracture mechanics methods to simulate elastic-plastic crack
growth and to predict residual strength of damaged structures is given. The evalu-
ation focuses on the applicability to thin-sheet metallic structures with single and
multiple cracks where plastic 
ow makes a substantial contribution to crack growth
resistance.

Among the fracture methods, the superior nature of the CTOA fracture cri-
terion to characterize elastic-plastic crack growth in thin-sheet metals is revealed
after review of two recent evaluations [91, 28]. Theories for simulating the CTOA-
driven crack growth are discussed and guidelines for using the CTOA fracture
criterion to predict residual strength of aircraft structures are presented.

11
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2.2 Evaluation of Fracture Mechanics Methods

Thin sheet metallic structures in ductile states generally undergo stable crack
growth before the occurrence of fast fracture. To have an accurate and reliable
prediction of residual strength for such structures, a fracture criterion that can
characterize stable crack growth under conditions of general yielding is needed.
Various fracture mechanics methods have been developed over the past several
decades. However, for materials exhibiting a large amount of plasticity and stable
crack growth prior to failure, there is no consensus on the most satisfactory method
[116, 91]. To evaluate various methods in assessing crack growth resistance and
predicting failure of 
awed structures, an experimental and predictive round robin
was conducted in 1979-1980 by the ASTM Committee E-24 on Fracture Testing
[91]. The fracture analysis methods used in the round robin included:

1. linear elastic fracture mechanics (LEFM) corrected for size e�ects or for
plastic yielding [91],

2. equivalent energy [148],

3. the two-parameter fracture criterion, KF and m [87],

4. the deformation plasticity failure assessment diagram based on deformation
plasticity, a J-integral estimation scheme, and a solution from the Plastic
Handbook [10, 75],

5. the theory of ductile fracture [11],

6. the KR-curve with the Dugdale model [37],

7. the e�ective KR-curve [79],

8. a two-dimensional (2D) �nite element analysis using the CTOA criterion
with stable crack growth [90], and

9. a three-dimensional (3D) �nite element analysis using a crack-front singular-
ity parameter with a stationary crack [81].

Fracture tests were conducted on compact tension specimens (CT), middle-
crack tension specimens (MT), and three-hole-crack tension specimens (THCT)
as shown in Figure 2.1. Three materials tested were 7075-T651 aluminum alloy,
2024-T351 aluminum alloy, and 304 stainless steel. The accuracy of the prediction
methods was judged by the failure loads obtained from experiments. For 7075-
T651 aluminum alloy, the best methods were the e�ective KR-curve, a 2D �nite
element analysis using CTOA with stable crack growth, and the KR-curve with
the Dugdale model. For 2024-T351 aluminum alloy, the best methods were the
two-parameter fracture criterion, a 2D �nite element analysis using CTOA with
stable crack growth, the KR-curve with the Dugdale model, the e�ective KR-curve,
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Figure 2.1: Specimen con�gurations tested and analyzed in ASTM round robin
(after [91]).

and the deformation plasticity failure assessment diagram. For 304 stainless steel,
the best methods were the e�ective KR-curve, a 2D �nite element analysis using
CTOA with stable crack growth, the two-parameter fracture criterion, and the
deformation plasticity failure assessment diagram.

These tests were conducted using specimens with a single crack con�guration.
Recently, fracture tests were conducted on a 0.09 inch thick, 2024-T3 aluminum
alloy using CT, MT, and MSD specimens [28]. Several fracture mechanics methods
were again evaluated including the e�ective KR-curve [79, 3], the J-integral resis-
tance curve (JR) [92], the crack-opening resistance curve (�R) [55], the T

�-integral
resistance curve (T �R) [4], the plastic-zone link-up criterion [139], and the critical
CTOA fracture criterion using a 3D �nite element analysis [29]. The study con-
cluded that the plastic-zone link-up criterion had limited use in predicting fracture
behavior of specimens. The e�ective KR, JR, T

�
R, and �R fracture criteria could

predict MSD fracture behavior of some larger specimens based on small specimen
tests, but were limited to a certain size of specimens. The critical CTOA fracture
criterion using a 3D, elastic-plastic �nite element analysis was able to predict the
fracture behavior for all specimen sizes.

Based on the above evaluations, the CTOA-driven, elastic-plastic stable crack
growth simulation appears to be a plausible fracture analysis method to assess
crack growth resistance and to predict residual strength of thin-sheet metallic
structures.



14

2.3 CTOA Fracture Criterion

The CTOA fracture criterion is essentially an integration of the near-tip strains. It
evolves from the critical crack tip opening displacement (CTOD) concept proposed
by Wells [144]. Since the CTOD has a limiting value of zero at the crack tip, the
local slope of the crack tip opening pro�le, or CTOA, was suggested to characterize
the crack growth behavior [2, 36]. Newman [90], Rice and Sorensen [121], and
Kanninen and Popelar [64] further de�ned the CTOA as the crack tip opening
angle measured at a �xed distance behind the moving crack tip.

The CTOA fracture criterion asserts that the angle maintains a constant value
during stable crack growth for a given thickness of a metallic material. This phe-
nomenon has been observed in numerous experiments for a wide range of metals
[66, 63, 65, 90, 34, 94], indirectly supported from slip-line �eld solutions [121, 118],
and veri�ed by numerical simulations [36, 90, 64, 93, 35, 30, 27, 29, 28, 20, 23, 22].
Tests on aluminum alloys as well as steels [65, 90] have con�rmed that the CTOA
is essentially constant after a certain transitional period of stable crack growth. A
larger critical CTOA during the initiation of stable tearing rapidly decreases to a
constant value. The amount of crack growth to reach the constant CTOA is ap-
proximately equal to the specimen thickness [34]. Based on a fatigue marker load
technique and scanning electron microscope observations, Dawicke and Sutton [34]
concluded that the non-constant CTOA region is associated with severe tunneling
during the initiation of stable crack growth.

Asymptotic solutions of a growing crack provide indirect support for using the
critical CTOA criterion. Rice et al. [118], extending the work of Rice and Sorensen
[121], obtained Prandtl slip-line �eld solutions for a Mode I, plane-strain growing
crack in a nonhardening elastic-plastic solid. Based on the asymptotic solutions,
they proposed that a similar geometric pro�le of crack opening very near the tip
is maintained during crack growth. The criterion for continuing crack growth in
[121, 118] is:

�c
d
=

�

�0

dJ

da
+ �

�0
E

ln
eR

d
(2.1)

where �c is the critical CTOD measured at a small characteristic distance d behind
the growing crack tip1. The dJ=da represents the rate of external applied loading
during crack growth. The �0, E, and e in Equation (2.1) are the yield stress,
the elastic modulus, and the natural logarithm base, respectively. The length
parameter R and material parameters � and � are to be determined by tests or
numerical analyses. This asymptotic �eld crack growth criterion is equivalent to
the CTOA fracture criterion.

The ability of the CTOA fracture criterion to simulate elastic-plastic crack
growth has been veri�ed by many numerical analyses. de Koning [36] and Anderson
[2] were among the �rst to demonstrate that CTOA can be used to characterize

1The characteristic distance is called �l and rm in [121] and [118], respectively.
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d

δ

Figure 2.2: Illustration of CTOA de�nition.

stable crack growth. Newman [90, 91], using a 2D elastic-plastic �nite element
analysis, was able to simulate stable crack growth and predict residual strength
within 10% for the test con�gurations shown in Figure 2.1.

Recently, the CTOA fracture criterion has been extensively veri�ed through
tests and analyses for various loading, geometry, and crack con�gurations2. Tests
on aluminum alloys [34, 94], 2D [93, 35, 30, 33], thin-shell [20, 23, 22], and 3D
[27, 29, 28] elastic-plastic crack growth analyses have been conducted to assess
the CTOA fracture criterion for aging aircraft applications. These studies will be
discussed in Chapter 3.

The CTOA fracture criterion is used in this study to characterize stable crack
growth in thin-sheet metallic materials. The de�nition of CTOA as suggested by
Newman [90] is adopted. For Mode-I only deformations, it is de�ned as (Fig-
ure 2.2):

CTOA = 2 tan�1
�

2d
(2.2)

where � is the CTOD measured at a speci�c distance, d, behind the crack tip. For
mixed-mode problems, the opening angle is obtained from the cross product of two
vectors:

CTOA = sin�1
ka� bk
kakkbk (2.3)

where a and b are the vectors from the crack tip to crack edges at a speci�c
distance, d, behind the crack tip.

2.4 Elastic-Plastic Crack Growth

Stable crack growth seems to be an inherent feature of elastic-plastic materials be-
cause of the occurrence of permanent plastic deformations during unloading [115].
This e�ect can be demonstrated by global energy dissipation or by the local resid-
ual plastic deformations. The energy dissipation e�ect on stable crack growth is
illustrated by considering the example used in [115]. Suppose two materials have

2Most of the test data are available from the Internet at irwin.larc.nasa.gov.
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CTOA < CTOAc

CTOA = CTOAc Nonlinear Elastic
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Elastic-Plastic
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Increase Loading
(or Displacement)

STAGE 0

Figure 2.3: Illustration of crack growth in nonlinear elastic and elastic-plastic ma-
terials.

the same uniaxial stress-strain curves; one is an idealized nonlinear elastic mate-
rial and the other is an elastic-plastic material. For cases without crack growth,
the same CTOA and strain concentration will occur in the two materials as illus-
trated in Figure 2.3, STAGE 0. As the crack propagates in the nonlinear elastic
material, deformation �elds need to be readjusted and the same crack tip open-
ing pro�le would occur for the new crack tip location [115]. This is not the case
for the elastic-plastic material because a large part of the energy is consumed by
plastic dissipation with far less strain recovered during unloading. Thus, a smaller
CTOA is obtained after crack growth (STAGE 1). Further increase of the applied
loading is needed to open the crack (STAGE 2) and causes stable crack growth
in the elastic-plastic material. Fracture instability will occur as the crack reaches
a steady-state condition in which the crack continually advances without further
increase in load. If the analysis is performed under displacement control, then a
reduction in applied load is required to maintain a constant CTOA for continuous
crack growth. Hereafter, CTOAa is the crack tip opening angle measured immedi-
ately after propagation, STAGE 1. CTOAb is denoted as the increase in crack tip
opening angle required to reach the critical value (CTOAc). Thus,

CTOAa + CTOAb = CTOAc (2.4)

satis�es the fracture criterion for crack propagation, and the condition

CTOAa = CTOAc (2.5)

indicates the occurrence of fracture instability for the analysis under load control.

Another related factor for stable crack growth is the plastic wake e�ect caused
by the residual plastic deformations [90]. As the crack grows, the plastic zone
behind the crack tip unloads to an elastic state leaving the appropriate plastic
wake behind the advancing crack tip. This e�ect results in resistance to crack
tip opening as illustrated in Figure 2.4. The dashed curves in the plastic wake
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active plastic zoneresidual plastic deformation

Figure 2.4: Illustration of plastic wake e�ect caused by crack growth.

region show what the crack opening pro�le would have been if residual plastic
deformations had not been retained in the material behind the advancing crack
tip. This phenomenon is also essential for simulating the initiation of stable crack
growth associated with high fatigue stress prior to tearing [30].

It is of interest to note that a di�erent density of residual plastic deformation
would develop as the crack propagates under plane stress compared to plane strain
conditions. Based on the Prandtl �eld together with an elastic sector following the
centered fan, Rice et al. [118, 117] have shown that asymptotic plastic strains for
quasi-static crack growth under plane strain conditions in elastic-perfectly plastic
materials are:

�P�� = F��(�) ln(
1

r
) r!0 (2.6)

where (r, �) is a local polar coordinate system with the origin at the crack tip
and F��(�) are functions determined from an asymptotic angular integration of
the plastic strain rate. No complete asymptotic solutions are available for plane
stress conditions, but only two types of plastic sectors can exist near the crack
tip; one is the centered fan and the other is constant stress [117, 86]. For the case
with the center fan sectors, Rice [115] shows that plastic strains under plane stress
conditions are:

�Pij = Gij(�) ln
2(
1

r
) � = 0 r!0 (2.7)

where Gij are scalars from solutions with a centered fan on the � = 0 ray. By
comparing Equations (2.6) and (2.7), one �nds that plastic strains on the � = 0
ray have a stronger singularity in plane stress than in plane strain. This observa-
tion gives a preliminary indication that higher residual plastic deformations may
occur under plane stress conditions leading to higher resistance to the opening of
a growing crack.

2.5 Link-up and Residual Strength Analysis with

CTOA Fracture Criterion

Since analyses based on the CTOA fracture criterion are direct simulations of real-
istic crack growth, multiple crack growth interaction and link-up are automatically
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Figure 2.5: Residual strength diagram under load control.
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Figure 2.6: Residual strength diagram under displacement control.

captured as the crack propagates. Residual strength of a damaged structure is also
obtained directly from the crack growth data. For tests conducted under load con-
trol with the plastic zone well-con�ned by the elastic region, fracture instability
is reached when no further increase of the applied load is required to maintain
quasi-static crack extension. For tests under displacement control, the maximum
load carrying capacity of a structure occurs followed by a reduction in load during
continued crack growth. The residual strength diagrams corresponding to load
control and displacement control are illustrated in Figures 2.5 and 2.6, respec-
tively. Note that under displacement control, the load instability occurs before
Equation (2.5) is satis�ed. By comparing Figures 2.5 and 2.6, one �nds that the
load-crack extension curve up to residual strength is obtained under load control.
On the other hand, the curve after residual strength can be obtained from the
displacement-control technique.



19

2.6 Guidelines for Using the CTOA Fracture Cri-

terion

Guidelines for using the CTOA criterion to predict fracture behavior and residual
strength of built-up aircraft fuselages are presented below3 for future reference.
The guidelines focus on (1) how to obtain a valid CTOA value from laboratory
fracture tests for a given thickness of thin-sheet metallic material, and (2) how to
correlate or �ne-tune numerical analyses based on laboratory tests to predict the
fracture behavior and residual strength of complex structures.

1. Conduct tension tests to accurately describe the stress-strain behavior of the
material.

2. Conduct fracture tests on coupon specimens. Measure the CTOAc and record
crack growth data during stable tearing. The experimental CTOAc measure-
ments typically have a scatter band of �0:5� to �1:0�. The material of the
specimen should be the same alloy, temper, and thickness as the material
of the complex structure. The specimen should be large enough to allow
signi�cant crack growth prior to reaching residual strength.

3. Use thin-shell elastic-plastic �nite element analyses accounting for 3D con-
straint e�ects developed at the crack tip4 to simulate fracture behavior. Com-
pare the predicted load versus crack growth to the experimental data and
determine the value of CTOAc that best correlates the experimental data
and numerical results. Note that:

� The characteristic distance, d, used in analyses should be the same as
the one used in experimental measurements.

� Agreement of the CTOAc values obtained independently from exper-
imental measurements and numerical analyses would greatly increase
the con�dence in the chosen CTOAc value.

4. Create a �nite element model for the structure to be analyzed. Use the
previously determined CTOAc value to predict the fracture behavior. The
model should have the same size and type of crack tip elements as the one
used in the coupon test correlation.

The validity of these guidelines as applied to fuselage structures will be examined
extensively through Chapters 3 and 4.

3These guidelines follow closely the recommendations made in [33, 29].
4One way to consider the 3D constraint e�ects in a thin shell analysis is to use

the plane strain core concept (see Figure 3.2).



20

2.7 Summary

Various LEFM and EPFM versions of fracture mechanics methods to characterize
fracturing processes in thin-sheet metals were reviewed and critiqued in Section 2.2.
Among them, the CTOA fracture criterion with a 3D elastic-plastic analysis was
found to be a superior one because of its relative independence of the geometry of
the structure, the length of the crack, and the presence of multiple cracks.

Previous experimental, analytical, and numerical studies for the CTOA fracture
criterion were reviewed in Section 2.3. The de�nition of the CTOA was given in
Equation (2.2) for Mode-I only deformations and in Equation (2.3) for general
mixed-mode problems.

The CTOA-driven elastic-plastic crack growth was studied in Section 2.4. The
inherent feature of stable crack growth in elastic-plastic materials was discussed
using the energy dissipation and residual plastic deformation. Residual plastic
strains from elastic-plastic crack growth under plane stress and plane strain con-
ditions were studied using the Prandtl �eld. Higher residual plastic deformations
were found under plane stress conditions. As a result, a higher fracture resistance
of a growing crack may occur under plane stress conditions. This behavior will be
further examined numerically in Chapter 3.

Analyses of link-up of multiple cracks and residual strength of damaged struc-
tures using the CTOA fracture criterion were discussed in Section 2.5. Finally,
guidelines for using the CTOA criterion calibrated from coupon tests to predict
fracture behavior of built-up aircraft fuselages were presented in Section 2.6.



Chapter 3

Residual Strength Analysis of a

Flat Panel with Self-Similar

Elastic-Plastic Crack Growth

Elastic-plastic crack growth simulations and residual strength prediction of 
at
panel coupon tests are studied in this chapter. The purposes of this chapter are
to:

1. further review and discuss some recent activities of using the crack tip open-
ing angle (CTOA) fracture criterion for aging aircraft applications,

2. model the fracturing processes in middle-crack tension (MT) specimens using
elastic-plastic, thin shell �nite element analyses,

3. explore the need to incorporate the three-dimensional constraint e�ect to
characterize fracture behavior of thin-sheet metals, and

4. model the fracturing processes in thin-sheet specimens with multi-site dam-
age (MSD).

3.1 Introduction

Tests and numerical simulations have been performed to assess the CTOA fracture
criterion for predicting residual strength of aging aircraft. Laboratory tests were
conducted on 
at panels made of aluminum alloys [34, 94]. Numerical simulations
were conducted using two-dimensional (2D) [93, 35, 94, 30, 33], thin-shell [20,
23, 22], and three-dimensional (3D) [27, 29, 28] �nite element elastic-plastic crack
growth analyses. We review these activities in a somewhat chronological order and
highlight the important �ndings of these studies below. The latest results are used
as a starting point for subsequent simulations in this study.

A series of fracture tests have been conducted using a 2024-T3 aluminum al-
loy for MT, CT, blunt notch, THCT and MSD specimens. Newman et al. [93]
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conducted tests on 0.05, 0.07, and 0.09 inch thick, 3.0 and 11.8 inch wide MT
and blunt notch specimens as well as 0.09 inch thick, 10 inch wide THCT spec-
imens. The blunt-notch specimen is similar to the MT specimen except that a
small hole is drilled at both ends of the saw cut. It is intended to assess the suit-
ability of elastic-plastic �nite element analyses with the small-strain assumption
to model large-scale plasticity deformations. A good agreement between predicted
and measured load versus notch-tip displacements substantiates the assumption.

The critical values of CTOA (CTOAc) were measured for the MT and THCT
specimens to assert the specimen con�guration independence of the fracture cri-
terion. The THCT specimen has a stress intensity factor solution like that of a
cracked, sti�ened panel [91]. The measured CTOAc values showed higher angles at
crack initiation, but reached the same constant value after a small transition pe-
riod of crack growth. The agreement of CTOAc between MT and THCT specimens
indicates that the CTOA fracture criterion is independent of specimen con�gura-
tion; this was further con�rmed by a follow-up study with measurements from CT
specimens [35].

A 2D elastic-plastic �nite element code, ZIP2D [88], and a 6.1 degree CTOAc,
computed at 0.01875 inch behind the crack tip, were used to simulate fracture
behavior of the MT specimens [93]. To model fatigue pre-cracking, cyclic loading
simulation was conducted prior to stable tearing analyses. Experimental and pre-
dicted results showed that a higher applied stress during the fatigue tests increased
the resistance of stable crack growth initiation. Predicted residual strengths under
plane stress conditions were within 4% of experimental results for 3.0 and 11.8 inch
wide MT specimens. Yet the plane stress analyses over-predicted crack extensions
prior to limit load while the plane strain analyses under-predicted crack extensions.

The above studies raised two important questions:

1. What is the governing mechanism that causes higher CTOAc values during
crack initiation?

2. What is the governing mechanism that causes the discrepancy between 2D
predictions and test results?

Dawicke and Sutton [30] examined the higher values of measured CTOAc ob-
served during crack initiation, i.e., question 1. Two independent techniques, op-
tical microscopy (OM) and digital image correlation (DIC) were used to measure
surface CTOAc during crack growth. The results of the two methods agreed very
well. Fatigue marker loads and a scanning electron microscope were used to exam-
ine the fracture morphology and sequences of crack front pro�les. For specimens
under low magnitude of fatigue stress prior to tearing, crack surfaces underwent a
transition from 
at-to-slant crack growth. A schematic of the transition is shown
in Figure 3.1. During the transition period, the CTOAc values were high and sig-
ni�cant tunneling occurred. After an amount of crack growth equal to about the
specimen thickness, CTOAc reached a constant value. After crack growth equal
to about twice the thickness, crack tunneling stabilized. For specimens that were
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Figure 3.1: Schematic of fracture surface indicating transition from a 
at to a slant
crack plane (after [93]).

pre-cracked under a high magnitude of fatigue stress, a 45-degree, slant, through-
thickness initial crack was formed prior to tearing. During the crack initiation
period, the CTOAc values of specimens with high fatigue stress were lower than
the ones with low fatigue stress. But the same constant CTOAc value was observed
after crack growth equal to about the specimen thickness.

The discrepancy between 2D predictions and test results, i.e., question 2, was
thought to be related to the 3D constraint e�ect. Although thin-sheet structures
behave essentially in plane stress, the constraint due to the �nite thickness of the
specimens can cause the regions local to the crack tip to approach plane strain
conditions [56].

To investigate the constraint e�ect, 2D and 3D analyses were conducted. In
the 2D analyses, a core of elements above and below the crack path were assigned
as plane strain while all other elements were assigned as plane stress. The plane
strain core concept is illustrated in Figure 3.2.

In their early attempt, Dawicke et al. [35, 94] used 2D �nite element analyses
with a 6.0 degree CTOAc computed at 0.02 inch behind the crack tip and a plane
strain core height equal to 0.2 inch to simulate fracture behavior with the constraint
e�ect. They showed that the use of a plane strain core was essential to accurately
model crack growth. The predicted residual strengths were within 2% for 3 and 12
inch wide, 0.09 inch thick MT specimens and within 4% for 6 inch wide, 0.09 inch
CT specimens. For 20 inch wide, 0.04 inch thick MSD specimens, 2D analyses with
a 5.1 degree CTOAc showed excellent agreement of link-up and residual strength
between predictions [94] and test results [13].

Dawicke et al. [27, 29] further studied the constraint e�ect using 3D �nite
element analyses with a 5.25 degree CTOAc computed at 0.04 inch behind the



24

plane strain core height

plane strain elements

plane stress elements

Figure 3.2: Schematic of the plane strain core.

crack tip. The 3D analyses successfully simulated fracture behavior of 2.0, 4.0,
6.0, and 8.0 inch wide CT specimens, 1.2, 3.0, 6.0, 12.0, 24.0, and 60.0 inch wide
MT specimens, and 12.0 inch wide MSD specimens made of 0.09 inch thick, 2024-
T3 aluminum alloy. A plane strain core height of 0.12 inch was required for 2D
analyses to match the measured results and the 3D fracture predictions.

In the following, the MT and MSD tests are studied. The FRANC3D/STAGS
program is used to simulate fracture behavior and predict residual strength using
the guidelines derived from the above 2D and 3D studies.

3.2 Experimental Procedures and Test Con�gu-

rations

Fracture tests of MT specimens were conducted by the Mechanics of Materials
Branch at NASA Langley Research Center [34, 27, 29]. The test specimens were
made of 0.09 inch thick 2024-T3 aluminum alloy. All specimens were fatigue pre-
cracked in the L-T orientation with a low stress level that results in a stress inten-
sity factor range of �K = 7 ksi

p
inch. For specimens with a single crack, di�erent

widths of panels equal to 3 inch, 12 inch, and 24 inch with a crack-length to width
ratio equal to 1/3 were tested (Figure 3.3). For cases with multiple cracks, only
the 12 inch wide specimens with two to �ve near collinear cracks as illustrated in
Figure 3.4 were tested. All tests were conducted under displacement control with
guide plates to prevent out-of-plane buckling. Both OM and DIC techniques were
used to measure the CTOAc during stable crack growth [34]. Results for MT and
CT specimens are shown in Figure 3.5. The CTOAc rapidly reaches a constant
value with a scatter band about �1:0�.
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Figure 3.3: Test con�gurations of MT specimens.
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Figure 3.4: Test con�gurations of 12 inch wide specimens with multiple cracks.
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Figure 3.5: Surface measurements of CTOAc (after [29]).

3.3 Numerical Simulations of MT Specimens

Fracture processes of MT specimens were simulated �rst. To investigate panel
size e�ects, numerical simulations of 60 inch wide panels with the same crack-
length-to-width ratio were also performed. Elastic-plastic �nite element analyses
based on incremental 
ow theory with the von Mises yield criterion and the small
strain assumption were used to capture the active plastic zone and the plastic wake
during stable crack propagation. A piecewise linear representation was used for
the uniaxial stress-strain curve for 2024-T3 aluminum (Figure 3.6). The CTOAc

used in this study was 5.25 degrees measured 0.04 inch behind the crack tip. This
particular CTOA value was provided by Dawicke and Newman [27, 29] based on
3D simulations of CT specimens1. Upon satisfaction of the fracture criterion,
nodal release and load (or displacement) relaxation techniques were employed to
propagate the crack. Because of the double symmetry of the geometry and loading,
only one quarter of the specimen with imposed symmetry boundary conditions
was modeled. Out-of-plane displacements were suppressed. Displacement-based
four-noded and �ve-noded quadrilateral shell elements having C1 continuity were
used [112]. These elements are intended to model thin shell structures for which
transverse shear deformation is not important. Each node of the element has six
degrees of freedom including three translations and three rotations. A special �ve-
noded shell element, formulated by combining two four-noded elements and using
linear constraint along the edge to eliminate the dependent node, was used to

1As noted by Dawicke and Newman [29], the fracture behavior of the CT spec-
imen is more sensitive to small changes in CTOAc than the MT specimen; thus
the CT specimen is more suitable to correlate predicted and measured results.
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Figure 3.6: Piecewise linear representation of the uniaxial stress-strain curve for
2024-T3 aluminum.

transition from locally re�ned zones around the crack path to a coarse mesh away
from the crack.

A convergence study was conducted to determine the sensitivity of the predicted
residual strength to the element size along the crack extension path. Three meshes
for the 24 inch wide panel were created with crack tip element sizes of 0.04 inch,
0.02 inch, and 0.01 inch. For all crack growth and residual strength analyses,
the CTOA was evaluated at 0.04 inch behind the crack tip to be consistent with
experimental measurements. A �nite element mesh with 0.04 inch square crack
tip elements for the 24 inch wide panel is shown in Figure 3.7. Predicted crack
growth results for cases with 0.04 inch and 0.02 inch crack tip elements as well as
predicted residual strengths for all three cases are shown in Figure 3.8. Although
some discrepancy was observed at the early stage of stable tearing, the predicted
results exhibited little in
uence of mesh size after a relatively small amount of
stable crack growth. More importantly, the predicted residual strength was very
insensitive to crack tip element size. Thus, all the remaining meshes used in this
study had 0.04 inch crack tip elements.

3.3.1 Numerical Results

Figure 3.9 shows two predicted crack opening pro�les for the 24 inch wide panel.
The angles were computed immediately after propagation (i.e., CTOAa, see Fig-
ure 2.3) with relaxation procedures completed and before increasing the applied
displacement. The two CTOAa values correspond to (1) the angle after the �rst
increment of crack growth, and (2) the angle after the specimen reaches its residual
strength. As shown in the �gure, CTOAa is much smaller than the critical angle
after the �rst crack growth increment. This clearly demonstrates the permanent
plastic deformation e�ects on stable crack growth in the elastic-plastic material
(cf. section 2.4). As the crack propagates, CTOAa increases. Since the analyses
were conducted under displacement control, the CTOAa at residual strength is less
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Figure 3.7: Finite element mesh for 24 inch wide MT specimen and detail along
crack path.

0 0.5 1 1.5 2

10

20

30

40

half crack extenion, ∆a (in.)

ap
pl

ie
d 

st
re

ss
 (

ks
i)

0 0.01 0.02 0.04
29.5

30

30.5

crack tip element size (in.)

pr
ed

ic
te

d 
re

si
du

al
 s

tr
en

gt
h 

(k
si

)

0.02 in.
0.04 in.

Figure 3.8: Convergence study: predicted crack growth and predicted residual
strength for 24 inch wide panel with di�erent crack tip element sizes.



29

CTOAa = 2.3˚ CTOAa = 4.0˚

0.0

0.002

0.004

0.006

0.008

a = 4.0 in. ∆a = 0.04 in. ∆a = 1.12 in.

Crack Opening Displacement (in.)

Figure 3.9: Crack opening pro�les and CTOAa after the �rst crack growth incre-
ment and after reaching the residual strength for 24 inch wide panels.

than, but approaching its critical value.
Comparisons between numerical results and experimental measurements for

the applied stress versus half crack extension are shown in Figure 3.10. Results of
predicted residual strength are comparable to experimental measurements, but as
the width of the panel increases, the relative di�erence between experimental mea-
surements and numerical predictions increases. Figure 3.11 depicts the predicted
plastic zone as the specimens reach their ultimate strength. Two distinct phenom-
ena are observed. For small specimens, plastic zones reach the free edge and the
limit load is attained due to net section yielding. In contrast, for large specimens,
plastic zones are well-con�ned by the elastic region and residual strength is reached
near the fracture instability of the specimens.

3.3.2 Discussion

As shown in Figure 3.10, the relative di�erence in residual strength between exper-
imental and numerical results increases as the width of the panel increases. This
discrepancy is believed to be due to the three-dimensional nature of the stresses
around the crack tip, a result of constraint e�ects due to the �nite thickness of
the panels [56, 31]. Numerical results using plane strain, plane stress with a plane
strain core height (see Figure 3.2) equal to 0.12 inch, and three-dimensional �nite
element analyses obtained from [27, 29] were studied to further demonstrate con-
straint e�ects on residual strength predictions. Predicted results shown in Table 3.1
and Figure 3.12 suggest that:

� thin shell �nite element analysis, behaving essentially in plane stress, tends
to over-predict the residual strength as the width of the panel increases;

� plane strain analysis over-predicts the residual strength of small specimens,
but under-estimates it for large specimens;
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Figure 3.10: Comparisons between experimental measurements and numerical pre-
dictions of applied stress versus half crack extension for various sizes
of specimens.



31

w = 3 in. w = 12 in.

w = 24 in. w = 60 in.

Figure 3.11: Numerical predictions of plastic zone for various sizes of specimens
reaching their residual strength.
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Table 3.1: Comparisons of Residual Strength Predictions of MT Specimens
(unit: ksi)

plate width thin shell plane � plane � core 3D exp.

3 in. 34.0 38.0 33.6 34.3 34.5
12 in. 30.7 32.7 30.7 30.8 31.3
24 in. 29.6 26.3 29.1 29.1 28.4
60 in. 28.1 16.6 26.7 26.3 N/A
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Figure 3.12: Predicted results of thin shell, plane strain, plane stress with a plane
strain core, and 3D analyses compared with experimental measure-
ments.

� 2D plane stress analysis with a plane strain core and 3D analysis properly
account for constraint e�ects. The predicted results follow the trend of ex-
perimental measurements even for wide panels.

The cross over between plane stress and plane strain in predicting residual
strength as the specimen size increases is an interesting topic. Based on the pre-
dicted plasticity distribution in Figure 3.11, the net section yielding mechanism
seems to dominate the residual strength prediction of small specimens. This may
explain why the plane strain analysis predicts a higher residual strength for small
specimens because the e�ective yield stress in plane strain is larger than that in
plane stress. Thus, a further increase of remote stresses under plane strain con-
ditions is needed for specimens to reach the point of net section yielding. For
larger specimens, residual strength is governed by stable crack growth and frac-
ture. As one would expect from the thickness e�ects on Kc in LEFM [9], materials
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in plane stress have higher fracture toughness than materials in plane strain. Re-
cent micromechanics-based, 3D analysis of ductile crack growth in a thin plate
with a Gurson-type model also showed that, although the crack growth resistance
at �rst increases with increasing plate thickness, the resistance to crack growth
decreases after a small amount of crack extension [84].

For CTOA-driven ductile crack growth, stresses and strains under plane stress
and plane strain conditions have not been studied in su�cient detail to clarify the
issue. A possible cause of higher crack growth resistance in plane stress may be
related to the residual plastic deformation e�ects. Based on asymptotic solutions
for cracks growing in an incompressible elastic-perfectly plastic material under
Mode I loading (Equations (2.6) and (2.7)), larger residual plastic deformations
would occur under plane stress than plane strain conditions leading to higher crack
growth resistance.

3.4 Numerical Simulations of Specimens with Mul-

tiple Cracks

Numerical simulations of tests with multiple cracks using the CTOA fracture cri-
terion are straightforward extensions of single crack specimen simulations. The
same fracture criterion (CTOAc = 5:25 degrees measured 0.04 inch behind the
crack tip) was used to simulate stable crack growth and the link-up of multiple
cracks, and to predict the residual strength. No supplementary criterion is needed.
Multiple crack test con�gurations as shown in Figure 3.4 were modeled and the
fracture processes were simulated. Note that the symmetry conditions along the
vertical central line of the specimens (see Figure 3.4) are no longer valid due to
the various lengths of fatigue pre-cracks; thus, at least one half of the specimen
needs to be modeled. A �nite element mesh for test con�guration b is shown in
Figure 3.13. Mesh patterns around the multiple cracks are similar to those of the
single crack models.

3.4.1 Numerical Results and Discussion

Numerical results and experimental measurements for the applied stress versus
half crack extension for test con�guration b and d are shown in Figure 3.14. Two
distinct applied load versus crack growth history curves are predicted. For test
con�guration a, b, and c, link-up of cracks happens before the specimens reach their
residual strength. For test con�gurations d and e, the limit load is attained before
link-up. These numerical predictions agree with observations from the fracture
tests.

Again, plastic deformation plays an important role in the fracture process.
Figure 3.15 shows the plastic zone evolution of test con�guration b during stable
crack growth. The inherent residual plastic deformations during crack growth are
clearly demonstrated through the deformed shapes. Figure 3.16 summarizes the
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crack growth regions

Figure 3.13: Finite element mesh for the test con�guration b (12 inch wide speci-
men with two cracks).
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Figure 3.14: Predicted applied stress versus crack extension for test con�guration
b and d.
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0.16 in.

(1) first increment

0.16 in.

(2) before link-up

0.16 in.

(3) after link-up

0.16 in.

(4) residual strength

Figure 3.15: Crack opening pro�le(s) and plastic zone evolution of test con�gu-
ration b during crack growth: (1) at the �rst increment, (2) before
link-up, (3) after link-up, and (4) reaching the residual strength.

relative di�erence between predicted results and experimental measurements. The
predicted residual strength of all �ve MSD simulations agrees very well (within 3%)
with experimental data. The predicted link-up load is comparable to experimental
measurements, but the di�erence is larger than that for the residual strength.
Reasons for the discrepancy may be related to the di�culty in measuring link-up
load during the fracture tests.

It is of practical importance to characterize the reduction in residual strength
caused by MSD [50]. Figure 3.17 plots numerical predictions of residual strength
versus lead crack length for cases with and without small cracks. A loss of residual
strength due to the presence of multiple small cracks is observed.

3.5 Summary

Stable crack growth and residual strength prediction for the 
at panel tests were
performed. The CTOA criterion was used to characterize the elastic-plastic crack
growth in thin-sheet metals. The major �ndings of the 
at panel study are:

1. Two distinct failure mechanisms are observed for MT specimens. For small
specimens, plastic zones reach the free boundary and the limit load is attained
due to net section yielding. For large specimens, plastic zones are well-
con�ned by the elastic region and residual strength is reached due to the
fracture instability of the specimens.

2. Constraint e�ects caused by the �nite thickness of the plates provide a reason-
able explanation for the increase of the relative di�erence between predicted
residual strength from thin shell analyses and experimental measurements as
the panel size increases.
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3. Predicted link-up load and residual strength are in good agreement with
experimental measurements for the panels with multiple cracks. A loss of
residual strength due to the presence of multiple small cracks is observed.

4. The CTOA fracture criterion, combined with elastic-plastic shell �nite ele-
ment analyses, proves to be a rational and rigorous simulation tool to charac-
terize stable crack growth and to predict the residual strength of 
at panels
with single and multiple cracks.



Chapter 4

Residual Strength Analysis of

Fuselage Structures with

Self-Similar Crack Growth

In this chapter, the crack tip opening angle (CTOA) fracture criterion obtained
from coupon tests is used to predict fracture behavior and residual strength of
built-up aircraft fuselages that are subjected to widespread fatigue damage (WFD).
Two fuselage models are investigated. The �rst example is a generic narrow body,
lap-jointed fuselage with stringers and frames but without tear straps. This rel-
atively simple, built-up con�guration is used to demonstrate the ability of the
FRANC3D/STAGS system to predict residual strength of fuselage structures sub-
jected to WFD. The second example is a detailed analysis of a wide body, lap-
jointed fuselage panel with tear straps, stringers, stringer clips, and frames. The
analyses focus on simulations of single crack growth and multi-site damage (MSD)
in a fuselage panel conducted in a full-scale, wide body, pressure test �xture [49, 50].
This example is intended to validate the analysis methodology by directly com-
paring numerical predictions with experimental measurements on actual fuselage
structures.

4.1 Demonstration Example: A Generic Narrow

Body Fuselage Panel

A relatively simple built-up narrow body fuselage con�guration was modeled. The
example demonstrates the analysis capability to predict the residual strength of a
pressurized fuselage, subjected to WFD and corrosion damage [25, 24]. The prob-
lem chosen for analysis was a three stringer wide, three frame long fuselage panel.
The panel section had a radius of curvature of 72 inches. It contained a lap joint at
the central stringer. The lap joint was a typical three row con�guration with 3/16
inch diameter countersunk-head rivets. The other two stringers were spot-welded
to the skin. The upper and lower skins were made of 0.04 inch thick, 2024-T3

38
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Frame 110

S-1

S-2

S-3

Frame 100

20.0 inches

Frame 120

13 equal spaces

radius = 72.0 inches
8.7 inches

Figure 4.1: Dimensions of generic narrow body panel for demonstration example.

aluminum alloy. The stringers and frames were made of 7075-T6 aluminum alloy.
Frames were simply connected to stringers by rivets. The panel con�gurations are
shown in Figures 4.1 and 4.2. The frame and stringer dimensions are shown in
Figure 4.3.

4.1.1 Numerical Model

All structural components including skins, stringers, and frames were modeled by
shell elements. Each node of a shell element has six degrees of freedom. A piecewise
linear representation was used for the uniaxial stress-strain curves for 2024-T3
and 7075-T6 aluminum alloys (see Figures 4.4 and 4.5). Symmetric boundary
conditions were imposed on all the boundary edges to simulate a cylinder-like
fuselage structure. Pressure loading was applied on all the external skins.

Both geometric and material nonlinearities were included in the analysis. The
former captures the out-of-plane bulging deformation and the latter captures the
active plastic zone and the plastic wake during stable crack propagation. The
nonlinear solution algorithm consists of Newton's method. Large rotations were
included in the nonlinear solution by a co-rotation algorithm applied at the element
level [96]. The Riks arc-length path following method was used to trace a solution
past the limit points of a nonlinear response [122, 113].

Rivets were modeled by elastic-plastic spring elements that connect �nite ele-
ment nodes in the upper and lower skins. Each rivet was modeled with six degrees
of freedom, corresponding to extension, shearing, bending and twisting of the rivet.
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Figure 4.2: Detailed rivet spacing for demonstration example.
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Figure 4.3: Dimensions of stringer and frame for demonstration example (dimen-
sions in inches, modi�ed after [25]).
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Figure 4.4: Demonstration example: piecewise linear representation of the uniaxial
stress-strain curve for 2024-T3 aluminum.
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Figure 4.5: Demonstration example: piecewise linear representation of the uniaxial
stress-strain curve for 7075-T6 aluminum.
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Figure 4.6: Demonstration example: rivet shear sti�ness and strength.

The sti�ness of each degree of freedom was de�ned by prescribing a force-de
ection
curve. The axial, 
exural, and torsional sti�nesses of the spring element were com-
puted by assuming that the rivet behaves like a simple elastic rod with a diameter
of 3/16 inch. The elastic shear sti�ness of the rivet was computed by the following
empirical relation developed by Swift [136]:

Krivet =
ED

[A + C(D=t1 +D=t2)]
(4.1)

where E is the elastic modulus of the sheet material,D is the rivet diameter, t1 and
t2 are the thicknesses of the joined sheets, and A = 5:0 and C = 0:8 for aluminum
rivets. The initial shear yielding and ultimate shear strength of the rivets were
assumed to occur at load levels of 510 lb and 725 lb, respectively. Once a rivet
reaches its ultimate strength, it will break and lose its load carrying capacity. The
force-de
ection curve shown in Figure 4.6 for shearing is intended to represent
empirically the net shear sti�ness of a rivet-joined sheet connection, accounting
for bearing deformations and local yielding around the rivet [136, 150].

The critical crack tip opening angle (CTOAc) was used to characterize elastic-
plastic crack growth and to predict residual strength. The CTOAc used in this
example was 5.7 degrees measured 0.04 inch behind the crack tip with a plane
strain core height equal to 0.08 inch1. Six di�erent crack con�gurations with
various lengths of lead and MSD cracks were studied. The initial con�gurations
prior to crack growth were:

1. a 7.14-inch lead crack,

2. a 7.14-inch lead crack with 0.025 inch MSD cracks emanating from both sides
of a fastener hole,

1Since no experimental crack growth data were available, this particular CTOAc

value was estimated based on the 5.25 degrees used in 0.09 inch thick, 2024-T3
bare material in Chapter 3. The plane strain core height was assumed to be twice
the sheet thickness.
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10.0 inches

Frame 100 Frame 120Frame 110

MSD crack length

Equivalent MSD crack length

rivet diameter (3/16 inch)

20.0 inches

Figure 4.7: Crack con�gurations with a 10-inch initial lead crack and MSD (exter-
nal view).

3. a 7.14-inch lead crack with 0.046 inch MSD cracks emanating from both sides
of a fastener hole,

4. a 10-inch lead crack,

5. a 10-inch lead crack with 0.025 inch MSD cracks emanating from both sides
of a fastener hole, and

6. a 10-inch lead crack with 0.046 inch MSD cracks emanating from both sides
of a fastener hole.

The lead crack was located symmetrically about the central frame line. The MSD
pattern was symmetric about the lead crack at the 3 rivets in front of the lead
crack. The lead and MSD cracks were located along the upper rivet row in the
upper skin of the joint. The crack con�gurations with a 10-inch initial lead crack
are shown in Figure 4.7. Since rivet holes were not modeled explicitly in the �nite
element model, a small crack with a length equal to the rivet diameter plus the
MSD length was used to model the MSD crack.

A mesh pattern with 0.04 inch crack tip elements was used. This pattern is
similar to the one used in the 
at panel simulation (cf. Figure 3.7). A �nite element
mesh for the model is shown in Figures 4.8 and 4.9. In addition to the e�ects of
WFD, material thinning due to corrosion damage was also studied. The e�ect of
material thinning was modeled by a uniform reduction in thickness of the upper
skin at the lap joint in the two center bays.
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Figure 4.8: Finite element mesh for demonstration example.

plane strain
core height

0.04 inch

initial crack prescribed crack growth path

Figure 4.9: Detailed mesh around crack path for demonstration example.
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4.1.2 Numerical Results and Discussion

Figure 4.10 shows the predicted results of the operating pressure loading versus the
total crack extension for all the cases conducted in this study. Predicted residual
strengths summarized in Figure 4.11 indicate:

� The MSD cracks signi�cantly reduce the residual strength of the fuselage
panel. A 21.8 to 28.0% loss of residual strength due to the presence of small
MSD is observed.

� A 10% uniform thickness degradation due to corrosion damage reduces the
residual strength by 3.4 to 9.0%. The coupling of WFD and corrosion damage
leads to the most severe damage scenario.

� In general, increasing the lead and MSD crack lengths reduces the residual
strengths. However, for the cases with a 10-inch initial lead crack, residual
strength seems to be relatively insensitive to the MSD crack sizes.

The deformed structure at residual strength for the case with a 10-inch initial
lead crack but without MSD and corrosion damage is shown in Figure 4.12. Out-
of-plane bulging is observed in the skin crack edges. Because of the sti�ness of
the stringer, the bulging at the lower crack edge is much smaller than the oppos-
ing edge. The unsymmetric out-of-plane bulging thus leads to an anti-symmetric
bending deformation �eld at the crack tips [108].

Figures 4.13 and 4.14 depict the predicted plastic zones for the cases with a
10-inch initial lead crack as the panel reaches its residual strength. As shown
in Figure 4.13, the evolving plastic zones are well-con�ned by the elastic regions
within the frames. For the case without MSD, dominant plastic zones accom-
panying the lead crack tips are observed. For the case with MSD, plastic zones
are developed at the multiple crack tips. The plasticity distributions are highly
in
uenced by the multiple crack interactions.

4.2 Validation Example: A Generic Wide Body

Fuselage Panel

Full-scale pressurized panel tests described in [49, 50] were simulated. The tests,
funded by the Federal Aviation Administration (FAA), and performed by the Boe-
ing Commercial Airplane Group, were intended to characterize crack growth in a
generic wide body, lap-jointed fuselage con�guration, subjected to WFD. Detailed
analyses using the FRANC3D/STAGS program were conducted to validate the
analysis methodology. Stress distributions were compared with strain gage read-
ings. Predicted stable crack growth and residual strength results were compared
with experimental measurements.
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Figure 4.10: Predicted operating pressure versus total crack extension for the
demonstration example: (a) 7.14-inch initial lead crack, (b) 7.14-inch
initial lead crack with corrosion damage, (c) 10-inch initial lead crack,
and (d) 10-inch initial lead crack with corrosion damage.
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Figure 4.11: Predicted residual strength versus initial lead crack length.

Figure 4.12: Deformed shape of the demonstration example (pressure = 15.3 psi,
magni�cation factor = 5.0).
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Figure 4.13: Predicted plastic zones for 10-inch initial lead crack without MSD
(pressure = 15.3 psi, magni�cation factor = 5.0).
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Figure 4.14: Predicted plastic zones for 10-inch initial lead crack with 0.025 inch
MSD (pressure = 11.3 psi, magni�cation factor = 5.0).
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Figure 4.15: Generic narrow and wide body test �xtures (after [82]).

4.2.1 Full-Scale Fuselage Panel Testing

Two generic pressure test �xtures were fabricated by the Boeing Commercial Air-
plane Group. One �xture had a radius of curvature of 74 inches to match narrow
body airplanes and the other had a radius of curvature of 127 inches to match wide
body airplanes. The test �xtures are shown in Figure 4.15. One end of each �xture
was mounted in a rigid framework and the other on rollers to allow longitudinal
displacement. Removable test sections were inserted in cutouts in the �xtures.
Tests were conducted under pressure loading only, using air as the pressurizing
medium. The full-scale fuselage panel tests investigated in this section were per-
formed on the wide body pressure test �xture. A brief overview of the panel tests
is described below. More information about the �xtures and tests can be found in
[82, 85, 49, 50].

Two identical curved lap-jointed panels were fabricated. The test panels were
designed to simulate typical wide body fuselage crown structures consisting of
bonded tear straps and 
oating frames connected to hat section stringers with
stringer clips. Skins and tear straps were made of 0.063 inch thick, 2024-T3 clad
aluminum alloy. Stringers, frames, and stringer clips were made of 7075-T6 clad
aluminum alloy. The skins were joined by the lap joints. The joint was a typ-
ical three row con�guration assembled using standard 3/16 inch diameter, 100�

countersunk-head rivets. The tear straps were hot-bonded to the skins at each
frame station. The outer and inner tear straps were overlapped above the lap
joint. The dimensions of the panels are shown in Figures 4.16, 4.17, and 4.18. The
dimensions of frames, stringers, and stringer clips are shown in Figures 4.19 and
4.20.

A �ve-inch initial saw cut was inserted along the upper rivet row in the outer
skin. For the panel with MSD cracks, small sawcuts were inserted in the outer
skin after the rivet holes had been drilled, but prior to the application of the fay
sealant and rivet installation. The panels were subjected to pressure cycling until
the length of the crack reached about two frame bays. The central frame was
then cut and the residual strength tests were conducted. Rosette strain gages were
installed back-to-back on the skins and tear straps in the vicinity of the lap joint.
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Figure 4.16: Validation example: test panel dimensions.
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NEXT FIGURE

Figure 4.17: Validation example: detailed panel dimensions (after [49]).
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Figure 4.18: Validation example: detailed rivet spacing (after [49]).



53

4.3585

1.063

0.2315

1.3445

floating
frame

stringer clip

joggling
stringer

skin
tear strap

Frame line

1.063

0.3285

0.3285

0.0815

4.687
4.3485

5.4

0.28

0.0945

1.2

Figure 4.19: Validation example: dimensions of frame and stringer clip (dimensions
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Figure 4.20: Validation example: dimensions of stringer (dimensions in inches).
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4.2.2 Numerical Model

All structural components including skins, stringers, and frames were modeled
by displacement-based four-noded or �ve-noded quadrilateral shell elements [113,
112]. To analyze the panel tests with reasonable computer resources and su�cient
accuracy, a global-local approach was used. Figure 4.21 shows the typical �nite el-
ement meshes for the two hierarchical modeling levels employed in the simulations.
A 12-stringer-bay wide and 5-frame-bay long panel, which is about the size of the
test panel, was modeled at the global level. A 1x1 bay sti�ened panel was modeled
at the local level. The local model di�ered from the global model in the �nite
element mesh density and the detailed geometric modeling of the cross sectional
shapes of stringers and frames.

Pressure loading was applied on all the external skins. Symmetric boundary
conditions were imposed on all the boundary edges of the global model to simulate
a cylinder-like fuselage structure. Uniform axial expansion was allowed at one
longitudinal end. On this boundary edge, an axial force equal to (PR=2) � L was
assigned where P is the applied pressure, R is the radius of the panel, and L is
the arc-length of the edge. The kinematic boundary conditions (displacements and
rotations) applied along the boundaries of the local model were extracted from the
global model results. In addition to these kinematic constraints, the local model
was also subjected to internal pressure.

A piecewise linear representation was used for the uniaxial stress-strain curves
for 2024-T3 and 7075-T6 aluminum alloys (see Figures 4.22 and 4.23). Similar to
the demonstration example, rivets were modeled by elastic-plastic spring elements.
The shear force-de
ection curve for the rivet is shown in Figure 4.24. Since no
special adhesive elements were available in the STAGS element library, the adhesive
bond between skin and tear strap was also modeled with spring elements. The shear
sti�ness for the springs was computed based on an e�ective area of the adhesive
with [128]:

Kadhesive =
Aeff

ta=Ga + (3=8)(t1=G+ t2=G))
(4.2)

where Aeff is the bond area being lumped at the �nite element nodal connection,
G is the elastic shear modulus of the sheet material, Ga is the elastic shear modulus
of the adhesive, t1 and t2 are the thicknesses of the bonded sheets, and ta is the
thickness of the adhesive bond. Because no adhesive tests were conducted, the
material properties of adhesive, Ga and ta, were obtained from the experimental
results in [135]. The maximum shear de
ection of the adhesive bond was assumed
to be 0.001 inch. Similar to the rivet spring, once the adhesive spring reaches
its ultimate strength, it will break and lose its load carrying capacity. The force-
de
ection curve for shearing is shown in Figure 4.25. The axial sti�ness of the
adhesive spring was derived from the shear sti�ness. The torsional and 
exural
sti�nesses of adhesive were assumed to be negligible.

Both geometric and material nonlinearities were used in the analysis at the
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Figure 4.21: Global and local �nite element models.



56

0.0
42.7

50.0
55.0
59.0
62.0
63.6
64.0

47.0

0.0
0.0040667

0.0186
0.0399
0.066
0.1
0.14
0.19

0.011

v = 0.33
E = 1.05e+04 ksi 0 0.05 0.1 0.15 0.2

20

40

60

ε, strain

σ,
 s

tr
es

s 
(k

si
)

stress (ksi) strain
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global and local modeling levels. The global shell model captures the overall non-
linear response of the sti�ened, curved, pressurized structure. The local shell model
provides the detailed deformation and stress �eld near the crack tips to compute
the fracture parameters (e.g., CTOA) that control stable crack growth.

4.2.3 Determination of CTOAc

Flat panel tests were conducted by the Boeing Commercial Airplane Group to
obtain material properties for fatigue and fracture analysis of the curved fuselage
panels. Four, 48 inch wide, 80 inch long, 0.063 inch thick middle crack tension
(MT) specimens were tested. The 
at panel specimens were made from the same
aluminum sheet used for the skin of the curved fuselage panels. A constant ampli-
tude cyclic loading was applied to propagate an initial sawcut. After the fatigue
crack growth, a residual strength test was conducted under a monotonically in-
creasing load. The test matrix prior to the residual strength test is summarized
in Table 4.1. Visual crack extension measurements were taken. Surface CTOAc

was measured for Specimen 2024 FAA TL3 during the residual strength test. Nine
values were obtained and the mean of the measured critical angles was about 5.5
degrees with a scatter band about �1:0�.

The value of CTOAc used in the residual strength analysis of the fuselage panels
was determined by �nding an angle within the scatter band of the CTOAc mea-
surements that best correlates with the observed stable crack growth and residual
strength of the coupon tests. The FRANC3D/STAGS program was used to sim-
ulate fracture behavior of the MT specimens. A �nite element mesh modeling a
quarter of the specimen with a crack tip element size of 0.04 inch and a half plane
strain core height equal to 0.08 inch is shown in Figure 4.26. The plane strain core
was used to capture the three-dimensional (3D) constraint e�ects developed at the
local crack tip [94, 31, 56]. The half core height was about the thickness of the
specimen.
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Table 4.1: Test Matrix for MT Specimens (after [49])

half initial crack half �nal fatigue crack �fatigueSpecimen ID
(inch) (inch) (ksi)

R

2024 FAA TL3 2.0 8.0 8.0 0.1
2.0 5.5 16.02024 FAA TL4
5.5 8.0 8.0

0.1

2024 FAA TL5 5.0 12.0 12.0 0.1
2024 FAA TL6 2.0 8.0 7.0 0.5

0.04 inch

core height
half plane strain

40 inches

24 inches

Figure 4.26: Finite element mesh for a quarter of 48 inch wide MT specimen.
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Figure 4.27: Predicted applied stress versus stable crack growth for 48 inch wide
MT specimen (half plane strain core height = 0.08 inch).

Figure 4.27 compares the predicted stable crack growth results to the exper-
imental measurements. The CTOAc of 4.5 degrees best correlates the predicted
and measured residual strengths. However, it under-estimates the applied stress
at the early stage of stable crack growth. The 5 and 5.5 degree critical angles give
a better correlation for the early stable crack growth, but over-predict the residual
strength by 8.5% and 14.3%, respectively.

The e�ect of the 3D constraint zone, i.e., the height of the plane strain core, on
stable crack growth and residual strength prediction was further investigated. Note
that in general, a change of the plane strain core height requires a di�erent value
of CTOAc to correlate the predicted and measured residual strengths. Figure 4.28
shows the core height e�ects on the stable crack growth prediction. A slightly
better correlation for the early growth is observed by increasing the plane strain
core height.

The discrepancy between predicted and measured stable crack growth at the
early stage of tearing might relate to the residual plastic deformation left by the
fatigue crack growth. This e�ectively increases the crack opening resistance during
early stable crack growth [30]. The plastic wake e�ect on stable crack growth and
residual strength analysis is further discussed in Section 4.2.5.

4.2.4 Numerical Results: Comparison with Strain Gage

Strain gage comparisons were made to verify predicted stress distributions. The
strain gage readings were recorded during fatigue and residual strength tests. The
records as the panels reach their residual strengths are of primary interest in this
study. The corresponding damage con�gurations are:
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Figure 4.28: E�ect of plane strain core height on predicted stable crack growth for
48 inch wide MT specimen.

1. a 38.2 inch long crack with a severed central frame for the panel without
MSD cracks, and

2. a 41.7 inch long crack with a severed central frame for the panel with MSD
cracks.

The ultimate pressure loadings are 9.4 psi and 7.5 psi, respectively. The loca-
tions of strain gages and the damage con�gurations are illustrated in Figure 4.29.
Five back-to-back strain gage rosettes are numbered for the purpose of compari-
son. Because similar trends for stress distributions were observed for both damage
con�gurations, only detailed strain gage comparisons for the panel without MSD
cracks are described below.

Nonlinear stress analyses at the global and local modeling levels were per-
formed. Figure 4.30 shows the overall deformed structures at both levels. Con-
vergence studies were conducted to ensure accuracy of deformations and stress
distributions. Figure 4.31 shows three �nite element discretizations, G1, G2, and
G3, used at the global modeling level. The mesh density around the gage loca-
tions was progressively re�ned from global model G1 to G3. The predicted hoop
stress distributions compared to strain gage readings are shown in Figures 4.32
and 4.33; the predicted results converge quickly. The predicted membrane hoop
stresses agreed well with experimental measurements. The predicted bending hoop
stresses were comparable to experimental measurements as one re�ned the �nite
element meshes.

Two discretizations, L1 and L2, were performed at the local modeling level
(Figure 4.34). The mesh density in the local model L1 was about the same as the
corresponding region in the global model G3. The purpose is to ensure transition
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Figure 4.29: Strain gage locations on the skin and tear strap.
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broken frame

Figure 4.30: Deformed structures of the validation example at global and local
modeling levels (pressure = 9.4 psi, crack length = 38.2 inch, magni-
�cation factor = 5.0).
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Global Model, G1 Global Model, G2 Global Model, G3

Figure 4.31: Three mesh discretizations at the global modeling level.
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Figure 4.32: Global convergence study: comparison between computed and mea-
sured hoop stresses for strain gage 1-4 (pressure = 9.4 psi; crack length
= 38.2 in.; frame cut; No MSD).
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Figure 4.33: Global convergence study: comparison between computed and mea-
sured hoop stresses for strain gage 5 (pressure = 9.4 psi; crack length
= 38.2 in.; frame cut; No MSD).
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Local Model, L1 Local Model, L2

Figure 4.34: Two mesh discretizations at the local modeling level.

accuracy of the hierarchical modeling. Predicted hoop stress distributions from
local model L1 agreed well with global model predictions and experimental mea-
surements (Figures 4.35 and 4.36). The other discretization, local model L2, had a
much higher mesh density, which is suitable for stable crack growth analyses. The
results from local model L2 disagreed with the rest of numerical predictions and
experimental measurements (Figures 4.35 and 4.36). In particular, the predicted
membrane hoop stresses were much lower than those observed.

The discrepancy is related to the idealized representation of the two-noded
spring element for the rivet connection in the �nite element model [150, 141]. The
single point connection results in unrealistic distortion of the surrounding shell
elements. The local distortion causes premature yielding of the shell elements
and reduces the load transfer from sheet to rivet. This arti�cial distortion of the
shell elements is discretization-dependent [141, pp. 318{327]. Re�ning the mesh
captures the local arti�cial distortion better, but makes the comparison to strain
gage readings worse [150].

Two modeling idealizations are proposed to avoid this arti�cial e�ect. One is
to faithfully represent the geometry of the rivets and their interference with the
sheets. This will considerably increase the required computational resources and
may not be simple to implement in thin-shell elastic-plastic crack growth analyses.
The other approach is to generate distributed connections between the two-noded
spring element and the surrounding shell elements [150]. The load distribution
can be accomplished by de�ning rigid links, sti� spring elements, or least-squares
loading conditions that connect the rivet-spring node to the surrounding shell-
element nodes. Care must be taken while de�ning the area in the shell elements
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Figure 4.35: Global and local model study: comparison between computed and
measured hoop stresses for strain gage 1-4 (pressure = 9.4 psi; crack
length = 38.2 in.; frame cut; No MSD).
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Figure 4.36: Global and local model study: comparison between computed and
measured hoop stresses for strain gage 5 (pressure = 9.4 psi; crack
length = 38.2 in.; frame cut; No MSD).
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stiff spring

rivet spring

Figure 4.37: Illustration of distributed connection that connects fastener node to
surrounding shell nodes

over which the rivet load is distributed. The area should be of the order of the rivet
cross-sectional area, since distributing the load over a larger area may inadvertently
sti�en the shell elements.

Figure 4.37 illustrates simulation of the distributed connection using sti� spring
elements. The sti� spring elements with an order of magnitude sti�er than the
rivet spring element were used to distribute the rivet load. For a rivet located
on a prescribed tearing path, it is expected that the rivet stays intact on only
one side of the crack as the crack propagates through the rivet. Thus, only the
shell elements on this side of the crack were used to model the distributed rivet
connection. Figures 4.38 and 4.39 show the predicted hoop stress distributions with
distributed connection simulations; a much better prediction is observed. The local
mesh model, taking into consideration the distributed rivet connection, was used
for stable crack growth and residual strength analyses.

4.2.5 Numerical Results: Stable Crack Growth and Resid-

ual Strength Analyses

Elastic-plastic crack growth and residual strength analyses were conducted using
the local model. Both 4.5 and 5.5 degree critical angles computed at 0.04 inch
behind the growing crack tip were used to investigate the sensitivity of CTOAc on
stable crack growth and residual strength prediction. The 4.5� CTOAc was the
angle that best correlates the predicted and observed residual strengths of the MT
tests. The 5.5� angle was the mean from the surface CTOAc measurements in the
MT tests. The plane strain core height was 0.16 inch along the prescribed tearing
path.

Figure 4.40 shows predicted results from the �rst attempt for stable crack
growth analyses. The change of the CTOAc from 4.5� to 5.5� increases predicted
residual strength by about 33% and 22% for the cases without and with MSD
cracks, respectively.
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Figure 4.38: E�ects of distributed rivet connection: comparison between computed
and measured hoop stresses for strain gage 1-4 (pressure = 9.4 psi;
crack length = 38.2 in.; frame cut; No MSD).
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Figure 4.39: E�ects of distributed rivet connection: comparison between computed
and measured hoop stresses for strain gage 5 (pressure = 9.4 psi; crack
length = 38.2 in.; frame cut; No MSD).
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Although analysis results in Figure 4.40 clearly demonstrate the loss of residual
strength due to the presence of MSD, all the predicted results (i) under-estimate
the pressure loading to initiate the stable crack growth, and (ii) over-estimate the
residual strength.

The much lower predicted pressure for tearing initiation is mainly caused by
residual plastic deformation left by the fatigue crack growth. A possible cause for
the lower residual strengths observed in the test may be related to the occurrence
of tear strap failure. Both e�ects are discussed below.

4.2.5.1 Residual Plastic Deformation E�ects

The test panels were subjected to pressure cycling prior to the residual strength
test. To incorporate the residual plastic deformations due to the cyclic loading, the
residual strength analyses were re-performed using an elastic-plastic cyclic loading
simulation suggested by Newman [89]. The procedure consists of the following
steps:

step 1 Close an appropriate length of fatigue crack.

step 2 Load the fuselage model up to the maximum pressure loading conducted
in fatigue tests.

step 3 Release the crack tip node and unload the model.

step 4 Repeat steps 2 and 3 until the crack tip reaches the initial position for
stable tearing.

This procedure implies that the fatigue crack only propagates at the maximum
pressure during the cyclic loading simulation. For Mode-I only deformations under
constant-amplitude load cycling, crack surfaces close at a positive applied load (i.e.,
step 3). The contact stresses cause the material to yield in compression. Crack
face contact and compressive yielding were not modeled in the current simulations.

In subsequent analyses, the fuselage model is brought to the operating pressure
level during fatigue tests without allowing the crack to advance. The crack is then
allowed to advance one element, and the load is returned to zero. Figure 4.41
illustrates results for a 0.32 inch length of fatigue crack closure used in the analysis
for the case without MSD cracks. The crack-opening and crack-closure pressures in
the fuselage panel simulations follow similar trends observed in the MT 
at panel
simulations [89]. After two cycles of simulation, the crack-opening and crack-
closure pressures quickly stabilize to 7.2 psi and 5.3 psi, respectively.

Figure 4.42 shows two predicted crack opening pro�les with and without fatigue
crack closure e�ect when the pressure loading reaches 8.6 psi (no growth). The ef-
fects of residual plastic deformations on the crack opening pro�le and consequently,
the CTOA prediction, are clearly observed.

The 7.2 psi crack-opening pressure shown in Figure 4.41 seems to be too high in
comparison with 2D plane stress results [89] and laboratory observations [39, 40].
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(a) (b)

Figure 4.42: Predicted crack opening pro�les of outer skin at initial tearing crack
tip: (a) case without fatigue crack closure, and (b) case with 0.32 inch
fatigue crack closure (no stable crack growth, magni�cation factor =
2.0).

This may be due to the lack of modeling of contact conditions when the crack closes.
That is, the crack faces pass each other so no compressive yielding is developed
in the unloaded state. The compressive yielding stress will reduce residual tensile
plastic deformation thus leading to a lower crack-opening pressure [89].

Figure 4.43 shows the predicted results for a 0.08 inch length of fatigue crack
closure used for the case with MSD cracks. During cyclic loading simulation, the
lead and MSD crack tips are released simultaneously. The crack-opening and crack-
closure pressures at the second loading cycle for the lead crack are about 4.7 psi and
3.3 psi, respectively. We note that the length of fatigue crack closure is restrained
by the length of MSD cracks. Further amount of fatigue crack closure simulation is
possible, but leads to somewhat ambiguous MSD fatigue crack propagation. The
results after two cycles of simulation, however, are believed to essentially capture
the residual plastic deformation e�ects. This assertion is based on observations
from the case without MSD cracks (Figure 4.41).

Figure 4.44 shows predicted stable crack growth incorporating the closure ef-
fects. Table 4.2 summarizes the predicted and observed starting pressure to initiate
stable crack growth. The plasticity-induced closure increases the initiation pres-
sure by about 150% to 210%. The predicted crack initiation loads are within 6% of
experimental measurements for the cases that incorporate prior plastic residual de-
formations due to fatigue crack growth. However, the predicted residual strengths
are still higher than those observed.

4.2.5.2 E�ects of Tear Strap Failure

A possible cause for the lower residual strengths observed in the test is the oc-
currence of failure of other structural elements. Figure 4.45 shows the predicted
e�ective stress distribution in the outer skin, inner skin, outer tear strap, and inner
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Figure 4.43: Predicted crack-opening and crack-closure pressure under cyclic load-
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Table 4.2: Predicted and Observed Pressure Loading for Stable Tearing Initiation

predicted (psi)
CTOAc = 4.5� CTOAc = 5.5�

observed (psi)

No MSD 2.3 2.7

No MSD (0.32 inch closure) 8.3 8.4
8.3

MSD 2.5 2.8

MSD (0.08 inch closure) 6.3 6.5
6.7
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Figure 4.44: Comparison between predicted stable crack growth with fatigue clo-
sure e�ects and experimental measurements: (a) case without MSD,
and (b) case with MSD.
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Figure 4.45: Predicted e�ective stress distribution (pressure = 9.86 psi, da = 0.5
inch, CTOAc = 5.5�).

tear strap as the stable crack growth analysis reaches 9.86 psi pressure loading for
the case without MSD cracks. Net section yielding is clearly shown in the inner
tear strap.

The possible breakage of the inner tear strap during the residual strength test
was also reported in [49]. To further investigate this damage scenario, a tear
strap with rivet holes was modeled. By taking the kinematic boundary conditions
from the local fuselage model, a stress concentration around the holes is observed
(Figure 4.46). It is then postulated that the high stress concentration is likely to
initiate new cracks from the rivet holes thus leading to breakage of the inner tear
strap.

To incorporate the tear strap damage scenario into the crack growth analysis,
the inner tear strap is cut prior to fatigue crack closure and stable crack growth
analyses as illustrated in Figure 4.47. The predicted crack-opening pressures of
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Figure 4.46: Predicted e�ective stress distribution of inner tear strap with rivet
holes (pressure = 9.86 psi, da = 0.5 inch, CTOAc = 5.5�).

the broken tear strap models with 0.32 and 0.08 inch fatigue crack closure are 7.0
psi and 3.1 psi for the cases without and with MSD cracks, respectively (cf. 7.2 psi
and 4.7 psi for the models with the intact tear strap).

Figure 4.48 shows the predicted stable crack growth and residual strength for
the fuselage models with a broken inner tear strap. The predicted residual strength
using 4.5� CTOAc is within 13% of the experimental observation for the case
without MSD cracks and within 1% of the experimental observation for the case
with MSD cracks.

We further examine several damage scenarios with the possible occurrence of
the tear strap failure at various stages of stable crack growth. In subsequent
analyses, the inner tear strap stays intact until it reaches a certain amount of stable

outer skin

outer tear strapinner tear strap

inner skin rivet lead crack

strap cut

Figure 4.47: Illustration of broken inner tear strap.
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Figure 4.48: Comparison between predicted stable crack growth with broken tear
strap and experimental measurements: (a) case without MSD, and
(b) case with MSD.
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crack growth. The analysis is continued until the residual strength is reached.
Figure 4.49 shows the predicted stable crack growth and residual strength using
4.5� CTOAc for the fuselage models without MSD cracks. For comparison, the
predicted results with an intact tear strap shown in Figure 4.44 are also plotted.
The in
uence of the tear strap failure on residual strength prediction is again
observed. The occurrence of the tear strap failure at various stages of stable crack
growth a�ects the predicted crack growth resistance. But this scenario has a very
mild in
uence on residual strength prediction, as long as there is a su�cient amount
of tearing before the structure reaches its residual strength.

4.2.5.3 Discussion

The di�erence between predicted and observed residual strengths for the case with-
out MSD cracks may be due to the simulated excess residual plastic deformation
prior to tearing. One way to reduce the plastic wake is to grow the crack at one half
the actual fatigue load. The corresponding crack-opening pressure with 0.32 inch
of fatigue crack closure for the case without MSD is 3.2 psi. This, in conjunction
with the tear strap damage scenario and 4.5� CTOAc, predicts 9.34 psi residual
strength for the case without MSD (Figure 4.50). The result is within 1% of the
experimental observation. However, the crack tearing now initiates at loads much
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Figure 4.50: Comparison between predicted stable crack growth and experimental
measurements (broken tear strap, reduced plastic wake, No MSD).

lower than those seen in the experiment, indicating that this correlation may only
be coincidental.

Another possibility of higher predicted residual strength for the case without
MSD may be related to the fact that the current model does not faithfully model
fracturing processes in the vicinity of rivets. In the panel test, the lead crack
propagated into and re-initiated from a rivet hole as illustrated in Figure 4.51.
Apparently, neither the CTOA fracture criterion for the lead crack propagation nor
the idealized distributed rivet representation have su�cient accuracy in capturing
this phenomenon. Further investigation is needed to quantify its e�ect on residual
strength prediction.

4.2.5.4 Major Observations

Several observations are made from stable crack growth and residual strength anal-
yses conducted in this section:

� For all the scenarios simulated, the loss of residual strength due to the pres-
ence of small MSD cracks is consistently observed. The reduction in residual
strength caused by MSD varies from 28% to 47%.

� The residual strength prediction is sensitive to changes in CTOAc. Altering
the CTOAc from 4.5� to 5.5� changes the predicted residual strength by 17%
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(c)(b)(a)

rivet lead crack

rivet hole

Figure 4.51: Illustration of crack propagation near rivet: (a) lead crack approach-
ing rivet, (b) lead crack growing into rivet hole, and (c) new crack
initiating out of rivet hole.

to 33% for all the analyses conducted in the damage con�guration without
MSD cracks. It changes the predicted residual strength by 12% to 22% for
the case with MSD.

� The residual plastic deformation or the plastic wake from fatigue crack
growth has a strong e�ect on stable crack initiation and a mild e�ect on
residual strength prediction. For stable crack growth initiation, it is essen-
tial to incorporate the plastic wake to accurately predict the starting pressure
loading. Neglecting plastic wake e�ect leads to a totally erroneous prediction
of early stable crack growth. For all the residual strength analyses conducted,
the plastic wake increases the predicted residual strength by 3% to 9%.

� The breakage of the inner tear strap, categorized as possible failure of other
structural elements during stable crack growth, is crucial to residual strength
prediction. For all the analyses conducted, the occurrence of the broken tear
strap reduces the predicted residual strength by 24% to 30%. Cutting the
tear strap prior to or during stable crack growth analysis is a preliminary
approach to model this damage scenario. A better approach would be to
incorporate proper mechanics to initiate and propagate the damage directly
in the crack growth analysis. Also, dynamic e�ects resulting from the failure
of the tear strap could be simulated, and may not be negligible [130].

4.3 Summary

The crack tip opening angle (CTOA) fracture criterion obtained from coupon tests
is used to predict fracture behavior and residual strength of built-up aircraft fuse-
lages that are subjected to widespread fatigue damage (WFD). In the process,
the feasibility and validity of the analysis methodology are assessed. The major
�ndings of the fuselage panel study are:

1. The occurrence of small MSD cracks substantially reduces the residual strength
of pressurized fuselages.



84

2. Modeling fatigue crack closure is essential to capture the fracture behavior
during early stable crack growth.

3. Possible damage of other structural elements during stable crack growth, e.g.,
tear strap failure, substantially reduces the residual strength of pressurized
fuselages.

4. The distributed rivet load treatment of fasteners is crucial for the local crack
growth model to accurately predict the stress distribution.

5. It is apparent that more full-scale fuselage tests need to be conducted to
fully verify the analysis methodology. However, the CTOA fracture criterion
together with the FRANC3D/STAGS program proves to be an e�ective tool
to simulate: (1) lead crack growth, (2) MSD crack growth, (3) multiple crack
interaction, (4) plastic wake from fatigue crack growth, (5) tear strap failure,
and (6) corrosion damage in pressurized fuselages.



Chapter 5

Theory for Curvilinear Crack

Growth in Planar and Thin Shell

Structures

Theories and simulations presented in the previous chapters mainly deal with self-
similar elastic-plastic crack growth where crack trajectories are known a priori.
However, a crack in a shell-like structural component under combined loading will
likely propagate in a non-self-similar fashion. Curvilinear crack growth can lead
to the so-called 
apping phenomenon observed in pressurized fuselages [137, 82]
(Figure 5.1). Flapping can produce a controlled opening in the fuselage that causes
a \safe" decompression and can prevent catastrophic failure of the structure.

As discussed in the previous chapters, stress intensity factors (SIFs) and the
crack tip opening angle (CTOA) serve well to explain fatigue and elastic-plastic
crack advancement in thin-sheet metallic structures. In addition to these crack
growth criteria, a criterion for predicting the direction of propagation is needed to
simulate curvilinear crack growth.

This chapter together with next two chapters examines some relevant issues
about curvilinear crack growth simulations. Theories for curvilinear crack growth
in planar and thin shell structures are discussed in this chapter. In Chapter 6,
computational methods used to evaluate the T -stress term that is known to have
a signi�cant e�ect on crack trajectory prediction are discussed. Curvilinear crack
growth simulations of coupon tests and full-scale fuselage panel tests are presented
in Chapter 7.

5.1 Introduction

In general, a crack in planar and thin shell structures under mixed-mode loading
will propagate in a curved fashion. This so-called non-self-similar crack growth
where crack trajectories are not known a priori requires a direction criterion to
predict the impending angle of crack propagation. For crack growth in ideally

85
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Figure 5.1: Flapping phenomenon in pressurized fuselage due to curvilinear crack
growth (after [82]).

brittle isotropic material, the three most common theories for predicting the crack
propagation angle are:

1. the maximum tangential stress theory (���max) [41],

2. the maximum energy release rate theory (G(�)max) [58], and

3. the minimum strain energy density theory (S(�)min) [126].

There is no consensus on the most satisfactory theory to predict crack growth
direction. A convenient way to compare the predicted crack growth angles from
various mixed-mode theories is through introducing a mixed-mode parameter, 	:

	 =
2

�
tan�1 j KI

KII
j (5.1)

that characterizes the elastic loading mixity [124]. Comparisons of the elastic
mixity parameter, 	, versus the predicted crack growth angle, �c, from the three
mixed-mode theories are plotted in Figure 5.2. For small values of 	 where KII is
dominant, the three theories predict di�erent crack propagation angles. For large
values of 	 where KI is dominant, the three theories predict similar results. In the
present study, the maximum tangential stress theory is used as a starting point to
evaluate the direction of crack growth.

The theory in its original form used only the singular stress �elds near the crack
tip to evaluate the maximum tangential stress [41]. Subsequent studies [145, 46]
suggested that the non-singular stress �elds can have a signi�cant e�ect on crack
growth direction and crack path stability. Recent studies [152, 72, 103] further
indicated that the non-singular stress �elds play an important role in predicting
crack turning and 
apping in fuselage structures.
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Figure 5.2: Comparison of elastic mixity parameters versus predicted crack growth
angles.

The maximum tangential stress theory was originally proposed to predict the
direction of crack propagation in ideally isotropic brittle material under plane
stress or plane strain conditions [41]. It has been extended to include the e�ects
of elastic and fracture anisotropy [14, 12, 21, 104]. Boone et al. [12], using the
theory proposed by Buczek and Herakovich [14], showed that both elastic and
fracture orthotropy can a�ect the direction of crack propagation, but the fracture
orthotropy was found to be a much more dominant factor. Chen et al. [21] found
that the fracture orthotropy has a strong in
uence on predicted crack trajectories
in narrow body fuselages. The theory has recently been extended to include the
non-singular stress contributions [104].

All the above theories were developed for two-dimensional, linear elastic frac-
ture mechanics (LEFM) problems. As discussed in Section 1.2.2, for pressurized
thin shell structures a geometrically nonlinear analysis is required to capture the
crack tip deformations. The fracture parameters developed under the linear elastic
framework have been extended to handle geometrically nonlinear problems with
�nite elastic deformations. Eshelby [43], using the energy-momentum tensor, de-
veloped a Lagrangian framework for LEFM problems. The counterpart fracture
parameters in the Lagrangian formulation are able to characterize the crack tip
�elds for deformations of arbitrary magnitude [43, 119, 125].

The maximum tangential stress theory originally developed under small-scale
yielding conditions has been extended to the elastic-plastic range. Shih [124] stud-
ied mixed-mode, plane strain problems using the deformation plasticity and near-
�eld singularity dominated by Hutchinson-Rice-Rosengren (HRR) �elds [60, 120,
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59]. He concluded that the crack propagation angle depends not only on the elas-
tic mixity parameter, 	, but also on the strain hardening exponent of materials.
Maccagno and Knott [80] as well as Pawliska et al. [100] using Shih's approach,
further showed the applicability of the maximum tangential stress criterion for
elastic-plastic materials. Recent studies [134, 51, 133] indicated that an additional
directional criterion related to shear type fracture is needed for Mode-II dominated
crack propagation in metals. These authors, however, agreed that the maximum
tangential stress criterion su�ces for Mode-I dominated crack propagation.

5.2 Crack Tip Fields in Two Dimensions and Thin

Plates

The crack tip stress and displacement �elds in two dimensions [146] as well as in
thin plates subjected to bending and twisting [147, 57] are outlined below.

Let (x, y) be the local Cartesian coordinates and (r, �) be the local polar co-
ordinates centered at the crack tip (Figure 5.3). For two-dimensional elastic crack
problems, Williams [146] derived a set of solutions for stresses and displacements
that would satisfy equilibrium and compatibility equations in the neighborhood of
a crack tip:

�ij =
+1X

�=�1
A� r

�

2 f�ij(�) (5.2)

ui =
+1X

�=�1
B� r

�

2
+1 g�i (�) (5.3)

where �
2
is the eigenvalue of the problem and A� and B� are coe�cients of expan-

sions.
With the physical argument that the total strain energy should be bounded at

the crack tip, stress expansions from Equation (5.2) in terms of the local Cartesian
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where KI andKII are Mode I and Mode II stress intensity factors, T is the constant
non-singular stress term that appears only in the �xx component, and AIn and AIIn

are Mode I and Mode II coe�cients of higher order terms.
Similarly, displacements from Equation (5.3) can be expressed as:

ux =
KI

4G

r
r

2�

�
(2�� 1) cos

�

2
� cos

3�

2

�
+
TreE (cos �)

+
1X
n=3

(AIn)

2G
r
n

2 �
�
� cos

n�

2
� n

2
cos(

n

2
� 2)�

+
�n
2
+ (�1)n

�
cos

n�

2

�
+
KII

4G

r
r

2�

�
(2�+ 3) sin

�

2
+ sin

3�

2

�
�

1X
n=3

(AIIn)

2G
r
n

2 �
�
� sin

n�

2
� n

2
sin(

n

2
� 2)�

+
�n
2
+ (�1)n

�
sin

n�

2

�
(5.7)



91

uy =
KI

4G

r
r

2�

�
(2�+ 1) sin

�

2
� sin

3�

2

�
� ~�

TreE sin �

+
1X
n=3

(AIn)

2G
r
n

2 �
�
� sin

n�

2
+
n

2
sin(

n

2
� 2)�

�
�n
2
+ (�1)n

�
sin

n�

2

�
�KII

4G

r
r

2�

�
(2�� 3) cos

�

2
+ cos

3�

2

�
�

1X
n=3

(AIIn)

2G
r
n

2 �
�
� cos

n�

2
� n

2
cos(

n

2
� 2)�

+
�n
2
+ (�1)n

�
cos

n�

2

�
(5.8)

where E is the Young's modulus, G is the elastic shear modulus, and � is the
Poisson ratio. For plane stress problems, � = (3� �)=(1 + �), eE = E, and ~� = �.

For plane strain problems, � = (3� 4�), eE = E=(1� �2), and ~� = �=(1� �).
In addition to the above two-dimensional �elds, Williams [147] and Hui and

Zehnder [57] further derived an asymptotic �eld for bending in elastic thin plates.
The bending stress and displacement �elds near the crack tip in the context of
Kirchho� plate theory are:0@ �brr
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where (r, �, z) are the polar cylindrical coordinates centered at the crack tip
(Figure 5.4), t is the plate thickness, and k1, k2 are the Kirchho� theory stress
intensity factors.

For elastic curvilinear crack growth in thin shell structures, the local crack tip
�elds are assumed to be su�ciently characterized by the two-dimensional plane
stress and the Kirchho� plate �elds [57, 108]. For points on a shell midsurface (i.e.,
z = 0), k1 and k2 stress intensity factors make no contributions to the displacement
and stress �elds. We thus will directly extend the two-dimensional crack growth
direction criterion to handle thin shell LEFM problems.

5.3 Crack Growth Direction Criterion Based on

Maximum Tangential Stress Theory

In their work on predicting the direction of crack growth, Erdogan and Sih stated
[41]:

\ : : : (There are) two commonly recognized hypotheses for the exten-
sion of cracks in a brittle material under slowly applied plane loads:

(a) The crack extension starts at its tip in radial direction.

(b) The crack extension starts in the plane perpendicular to the direc-
tion of greatest tension.

These hypotheses imply that the crack will start to grow from the tip
in the direction along which the tangential stress ���, is maximum : : :
"

The tangential stress ��� near the crack tip can be derived from the local Carte-
sian stresses (Equations (5.4), (5.5), and (5.6)) with coordinate transformations.
For two dimensional mixed-mode problems, ��� up to the order of the T -stress
term is:
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Based on the hypotheses that crack extension would take place in the direction
along which ��� possesses a maximum value, we have:
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Taking the derivative of ��� with respect to �, we have:
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where rc is a critical distance away from the crack tip and �c is the corresponding
crack propagation angle. We note that this directional criterion is the same as
the one proposed by Williams and Ewing [145] and later corrected by Finnie and
Saith [46]. The above equation reduces to the classical Erdogan and Sih directional
criterion [41] if T = 0 or rc = 0, i.e.,

KI sin �c +KII (3 cos �c � 1) = 0 (5.18)

By comparing Equation (5.17) with Equation (5.18), one �nds that a length
parameter, rc, is needed to incorporate T -stress into the crack growth directional
criterion. We will further discuss the physical meaning of rc in Section 5.3.3.

5.3.1 Crack Path Stability under Pure Mode I Conditions

Using Equation (5.17), crack path instability in pure Mode I conditions is predicted
for certain circumstances under positive T -stress. For pure Mode I problems where
KII = 0, we have closed-form solutions for Equation (5.17) [152]:

�c = 0 (5.19)

or

�c = 2 cos�1
"
sF �

r
1

2
+ s2F

#
(5.20)
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Figure 5.5: The tangential stress ��� distributions for di�erent values of critical
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in which sF � (3KI)=
�
32T
p
2�rc

�
. For �c = 0, the second derivative of ��� with

respect to � is:

@2���
@�2

= � 3

4

KIp
2�rc

+ 2T (5.21)

Thus, under a negative T -stress environment, @2���=@�
2 is always smaller than

zero. This implies that ��� at �c = 0 is a relative maximum and the crack will
grow in a straight (i.e., self-similar) manner. For positive T -stress, the crack will
propagate in a self-similar fashion only if:

rc <
9

128�
(
KI

T
)2 (5.22)

For rc > (9K2
I )=(128�T

2), ��� at �c = 0 is a relative minimum and a crack will
grow in the direction predicted by Equation (5.20). Figure 5.5 illustrates the ���
distribution for di�erent values of rc and the relative maximum and minimum.

5.3.2 Determine Crack Propagation Angle under General

Mixed-Mode Problems

For general two-dimensional mixed-mode problems, the crack propagation angle
can be solved from Equation (5.17) for given rc, KI , KII, and T . Figure 5.6 plots
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the predicted propagation angle �c versus a dimensionless parameter T [104]:

T � 8

3

T

KI

p
2�rc (5.23)

for various ratios of KII=KI .
The parameter rc is assumed to be a material constant and will be further

discussed in next section. KI and KII for two-dimensional problems can be accu-
rately computed from the path independent M -integral [149] or from symmetric
and anti-symmetric parts of the J-integral [15]. For thin shell problems, mem-
brane and bending stress intensity factors can be obtained from an extension of
the modi�ed crack closure integral method [106, 142]. How to obtain an accurate
T -stress numerically is not obvious from the literature. We will further discuss this
issue in Chapter 6.

It is of historical interest to consider a speci�c angled crack problem shown in
Figure 5.7. For this special case, we have [41, 46]:

KI = �
p
�a sin2 � KII = �

p
�a sin � cos � T = �(cos2 � � sin2 �)

The predicted propagation angle �c can be solved by applying Equation (5.17). In
Figure 5.7, the predicted propagation angles �c from Equation (5.18) (or from Er-
dogan and Sih [41]) are compared with those of

p
2rc=a = 0:1 from Equation (5.17)

(or from Finnie and Saith [46]). Some results are observed:
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� Two curves intersect at � = 45� in which T = 0.

� The incorporation of the T -stress predicts a larger propagation angle under
positive T -stress conditions. It predicts a smaller angle under negative T -
stress conditions.

5.3.3 Discussion: The Critical Distance rc

As shown in Figures 5.5 and 5.6, the critical distance ahead of the crack tip,
rc, plays an important role in predicting crack path stability and crack growth
direction. Earlier studies by Williams and Ewing [145] and Finnie and Saith [46]
assumed that rc=a is a constant value (cf. 2rc=a = 0:1 in Figure 5.7). Streit
and Finnie [132] further postulated that rc is a critical distance in front of the
crack tip where fracture would occur. A photoelastic and experimental study
of Mode I crack extension was conducted. The ratio KI=T was determined by
analyzing the isochromatic-fringe geometry in the photoelastic experiments. The
critical distance rc was determined by simply observing the onset of crack turning
where rc = (9K2

I )=(128�T
2) at this instance. They concluded that for 7075-T651

aluminum plate, rc = 0:005 inch for side-grooved specimens and rc = 0:01 inch for
the ungrooved, L-T specimens. These values seem to be too small in comparing
with subsequent experimental studies [110, 103].

Ramulu and Kobayashi [110] extended the method of Streit and Finnie [132]
and measured rc for a dynamically growing crack. They observed that rc is a
constant value for specimens under various mixed-mode conditions. Based on the
dynamic photoelastic experiments, they concluded that rc is about 0.05 inch for



97

Homalite-100. Recent studies by Kobayashi and his associates [71, 72, 73] further
estimated that rc is about 0.04{0.06 inch for 7075-T6 and 2024-T3 thin-sheet
fracture specimens.

Pettit et al. [103] determined the magnitude of rc by analyzing crack turning
in 2024-T3, double cantilever beam (DCB) specimens. They estimated that the
value of rc is about 0.05 inch for stable tearing under a monotonically increasing
load. For slow fatigue crack growth under a low stress level of cyclic loading, rc is
assumed to be negligible. Recent ongoing research [102] further suggested that the
magnitude of rc for stable tearing in 2024-T3 specimens is about 0.04{0.09 inch.

In this study, we simply assume that rc is a material constant that can be deter-
mined from fracture coupon tests. The e�ect of rc on crack trajectory prediction
will be extensively examined in Chapter 7.

5.3.4 Anisotropic Problems

Material grain structure variations and other micro-structural factors from di�er-
ent forms of material processing can in
uence fracture toughness variation with
direction and, therefore, the crack growth trajectory. Taking a rolled sheet made
of 2024-T3 aluminum alloy for example, the direction perpendicular to the rolling
direction could have a 5 to 20% higher toughness than that of the rolling direction
[47, 44, 99].

In general, crack propagation in anisotropic media is considerably more com-
plicated than the isotropic case [12]. In the present work, a simple extrapolation
of the maximum tangential stress theory to materials with orthotropic toughness
proposed by Buczek and Herakovich [14] is used. The tangential stress is normal-
ized with respect to the directional strength of the material. Crack propagation is
assumed to be in the direction of maximum normalized stress, such that:

Maximum

�
���(KI ; KII; T; rc; �)

Kc(�)

�
=

�
���
Kc

�
critical

at � = �c (5.24)

where � is the angle characterizing the material grain orientation, Kc(�) is the
strength parameter characterizing the material fracture resistance, and �c is the
angle of impending crack propagation.

A simple elliptical function is used in this study to characterize the anisotropic
fracture toughness, Kc(�) [14, 68]. The equation of the ellipse with fracture tough-
ness Kc(0

�) along the material longitudinal (~x) direction and Kc(90
�) along the

transverse (~y) direction is (Figure 5.8):

~x2

[Kc(0�)2]
+

~y2

[Kc(90�)2]
= 1 (5.25)

Substituting ~x = Kc(�) cos� and ~y = Kc(�) sin� into Equation (5.25), we have:

Kc(�)
2

�
cos2 �

Kc(0�)2
+

sin2 �

Kc(90�)2

�
= 1 (5.26)
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Figure 5.8: Elliptical representation of anisotropic fracture toughness.

Thus, the anisotropic fracture toughness Kc(�) can be expressed as [104]:

Kc(�) =

s
1

cos2 � + (1=Km)2 sin
2 �

(5.27)

where Km is the fracture orthotropy ratio de�ned as Km � Kc(90
�)=Kc(0

�).
Both the fracture orthotropy ratio, Km, and the material orientation angle, �,

can a�ect the predicted angle of impending fracture propagation, �c, as demon-
strated in Figure 5.9 and 5.10.

We note that Equation (5.26) can be generalized to the n-th order:

Kc(�)
n

�
cos2 �

Kc(0�)n
+

sin2 �

Kc(90�)n

�
= 1 (5.28)

and n = �1 was used in [14, 12].

5.4 Discussion: Crack Growth Direction Crite-

rion for Geometrically and Materially Non-

linear Problems

Possible extensions of the above crack growth directional criteria developed un-
der the LEFM framework to handle geometrically and materially nonlinear shell
problems are discussed below.
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5.4.1 Geometrically Nonlinear Problems

To compute stress intensity factors and T -stress with elastic deformations of ar-
bitrary magnitude, one can simply evaluate the fracture parameters based on the
computed quantities in the current deformed equilibrium con�guration. This so-
called Eulerian approach together with the modi�ed crack closure integral method
has been used successfully to compute the membrane and bending stress intensity
factors for geometrically nonlinear shell problems [106, 142].

It is often desirable to use the path independent integral to evaluate the fracture
parameters. However, the integral is di�cult to be directly applied in the Eulerian
framework [43]. Taking the deformed structure shown in Figure 4.30 for example,
it is conceptually di�cult to evaluate a rigorous path independent integral at the
deformed con�guration with the occurrence of severe bulging.

An alternative way is to evaluate the path independent integral in the La-
grangian framework [43, 70]. The derivations rely on �nding the counterparts of
conservative (i.e., path independent) integrals, well-de�ned under elastic states
with in�nitesimal deformations, in the context of �nite elastic deformations. The
fracture parameters (for example, stress intensity factors) are then related to these
conservative integrals.

The well known conservative J-integral in two dimensions, for example, is given
by:

J =x

Z
�

�
W�xj � �ij

@ui
@x

�
nj d� (5.29)

where � is an arbitrary counter-clockwise contour around the tip of a crack, W
is the strain energy density, �xj is the Kronecker delta, �ij are components of the
Cauchy stress tensor, ui are components of the displacement vector, and nj are
components of the normal vector along the contour �.

The counterpart of the J-integral under �nite elastic deformations can be de-
rived in a relatively straightforward manner in Lagrangian coordinates, X. With
re-interpretation of the �eld quantities with reference to the undeformed con�g-
uration, the J-integral for geometrically nonlinear problems can be expressed as
[43, 70]:

JGN =x

Z
C

�
W�Xj � pij

@ui
@X

�
Nj dC (5.30)

where C and Nj are evaluated in the undeformed con�guration, W is interpreted
as the strain energy per unit undeformed volume, and pij are components of the
nominal stress tensor (transpose of the �rst Piola-Kirchho� stress tensor).

The J in linearized and JGN in �nite elastic states both characterize the energy
release per unit crack advance [43]. Under Mode-I, plane stress conditions, we thus
have:

KI =
p
EJ (5.31)
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and equivalently,

(KI)GN =
p
EJGN (5.32)

Similarly, other fracture parameters can be related to their �nite deformation
counterparts. As a result, crack propagation and direction criteria derived under
LEFM can be extended to handle geometrically nonlinear problems.

However, we note that the Lagrangian counterparts of conservative integrals
to characterize the stress intensity factors and T -stress for geometrically nonlinear
shell problems are yet to be derived. In this study, we will simply use the mod-
i�ed crack closure integral method to compute the membrane and bending stress
intensity factors [106, 142] and the displacement correlation method to evaluate
the T -stress for geometrically nonlinear shell problems [69, 134, 104].

5.4.2 Materially Nonlinear Problems

The crack growth directional criteria developed above are strictly valid only for
small-scale yielding problems. The criteria may be su�cient for curvilinear crack
growth under fatigue loading (cf. Section 1.2.2). For stable crack growth, direc-
tional criteria need to be extended to the elastic-plastic range.

In an early attempt, Shih [124], using HRR �elds, extended the maximum
tangential stress theory to the elastic-plastic range under plane strain conditions.
Figure 5.11 shows the predicted crack propagation angle, �c, versus the elastic load
mixity, 	 (Equation (5.1)). The results indicate that the crack propagation angle,
�c, depends not only on the elastic mixity parameter, 	, but also on the strain
hardening exponent of materials, n.

For n = 1 (i.e., linear elastic material), the criterion reduces to the maximum
tangential stress theory of Erdogan and Sih [41]. Thus, the theory will not capture
the crack path instability under the pure Mode-I conditions caused by T -stress.
And more importantly, the theory is based on the HRR �elds. The �elds are
no longer valid to characterize the elastic-plastic crack tip �elds after a su�cient
amount of stable crack growth. These two main disadvantages prohibit direct
application of the above theory to predict the direction of stable crack growth in
fuselage structures.

Recently, a simple crack growth directional criterion based on the crack tip
opening displacement (CTOD) concept has been proposed by Sutton et al. [133].
The criterion is motivated by the laboratory observations of recent Arcan specimen
tests conducted by Amstutz et al. [1, 32]. The test results show that there is a
sharp transition of crack growth behavior from predominantly Mode I type to
Mode II type fracture for 2024-T3 thin sheet materials. Since the crack growth
direction prediction based on the maximum tangential stress theory is mainly for
Mode I dominated fracture, Sutton et al. [133] proposed a general CTOD-based
criterion to overcome this disadvantage.

The CTOD-based crack growth directional criterion considers a kinked crack
departing from a main crack as shown in Figure 5.12. The criterion postulates
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Figure 5.11: Comparison of elastic mixity parameters versus predicted crack
growth angles for di�erent strain hardening exponents (after [124]).

that crack growth direction of a kinked crack would likely follow a path that gives
the maximum CTOD of the kinked crack (i.e., �). The following steps outline
the procedure to incorporate the directional criterion into the elastic-plastic crack
advancement controlled by the CTOA criterion [133]:

step 1 Apply the load monotonically until D (or CTOD) at a speci�ed distance L
behind the main crack tip, or equivalently CTOA, reaches its critical value.

step 2 Release the main crack tip node and extend the crack along every possible
ray from the crack tip.

step 3 Compute � of all possible kinked cracks.

step 4 Determine the crack propagation angle �c by �nding the path that gives
the maximum �.

step 5 Continue stable crack growth simulation controlled by the CTOA criterion.

The CTOD-based directional criterion predicts both Mode I and Mode II type
crack growth observed in Arcan specimens [133]. The directional criterion, how-
ever, su�ers from its computational ine�ciency since � must be evaluated for a
large number of rays to determine the propagation angle.

To overcome the drawback, Sutton [133] further assumed that there exists a
unique relationship between � (CTOD of the kinked crack) and D (CTOD of the
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main crack). By de�ning a local mixity � = Dy=Dx of the main crack, an empirical
equation to predict the crack propagation angle, �c, was found:

�c =

(
a1 tan

�1(b1�) if � < �c

a2 cos(b2�)
�
j�cj if � > �c

(5.33)

where �c is the critical local mode mixity for the transition between Mode I and
Mode II type fracture and a1, b1, a2, and b2 are the curve �tting parameters based
on fracture test data. A set of parameters, �c = 70�, a1 = �36:5, b1 = 2:2,
a2 = 57:3, and b2 = 1:0 were obtained from the test data of 0.09 inch thick Arcan
specimens made of 2024-T3 aluminum.

Equation (5.33) and the �tting parameters based on Arcan test data were
argued to be material constants and to be applicable to other geometries with the
same thickness [133]. We, however, found that this assertion may not hold for all
cases. Taking the angled crack problems under LEFM for example, a substantial
di�erence as shown in Figure 5.13 is observed between the predicted angles by the
maximum tangential stress theory and those from Equation (5.33). The di�erence
observed in Mode I dominated fracture is thought to be related to: (1) built-in
orthotropy and (2) widespread plasticity in Arcan specimens. Further investigation
is needed to fully justify the observation and assess the geometry independence of
Equation (5.33).

Neither the HRR-type extension of the maximum tangential stress theory nor
the CTOD-based directional criterion seems to be su�cient to fully characterize
the direction of elastic-plastic crack growth. In this study, we will simply apply
the LEFM approach to predict the direction of elastic-plastic crack growth.
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5.5 Summary

In this chapter, theories for curvilinear crack growth in planar and thin shell struc-
tures were discussed. A well known crack growth directional criterion based on the
maximum tangential stress theory was examined. Singular as well as non-singular
constant stress (or T -stress) �elds were included in evaluating the stress states near
the crack tip.

Equation (5.17) described the predicted impending propagation angle based
on the maximum tangential stress theory with the T -stress e�ect. Its numerical
outcome on crack path instability and crack growth direction was discussed in
Sections 5.3.1 and 5.3.2. This criterion will be used in Chapter 7 to predict the
propagation angle for isotropic mixed-mode problems.

In Section 5.3.4, the directional theory was further extended to include the
e�ect of material anisotropy. A simple elliptical function was used to characterize
the anisotropic fracture resistance in di�erent material orientations. The predicted
propagation angle incorporating the T -stress and fracture toughness orthotropy ef-
fect was described symbolically in Equation (5.24). The e�ect of fracture toughness
orthotropy ratio and the material orientation angle on the predicted propagation
angle was shown in Figures 5.9 and 5.10. This directional criterion will be used in
Chapter 7 to predict the propagation angle for orthotropic mixed-mode problems.

We then discussed possible extensions of the above directional criteria to han-
dle both geometrically and materially nonlinear problems. For elastic deformations
of arbitrary magnitude, one can evaluate the stress intensity factors and T -stress
based on either the Eulerian or Lagrangian formulation. The latter is conceptually
simple to be used with the powerful path independent integral. However, the La-
grangian counterparts of conservative integrals to characterize the stress intensity
factors and T -stress for geometrically nonlinear shells are yet to be derived. In this
study, the modi�ed crack closure integral method and the displacement correlation
method will be used to evaluate the stress intensity factors and T -stress in thin
shells, respectively.

The possible extension of the maximum tangential stress criterion to predict the
propagation direction of elastic-plastic crack growth was commented and critiqued.
A new CTOD-based direction criterion was also examined. We concluded that
neither of them seems to be su�cient to fully characterize the direction of elastic-
plastic crack growth. Thus, in this study we will simply apply the LEFM approach
(Equations (5.17) and (5.24)) to predict the elastic-plastic crack growth direction.



Chapter 6

Numerical Evaluation of T -Stress

In this chapter, numerical methods for T -stress evaluation are discussed. Among
all the possible methods that can be used to compute T -stress, we focus on the
path independent integral method because its inherent nature allows us to evaluate
the desired value in a far-�eld region away from the crack tip where numerical
accuracy is greater. We will �rst put the FRANC3D/STAGS program aside and
use a powerful two-dimensional hp-version �nite element code [74] to fully quantify
and assess the accuracy of computed T -stress using the path independent integral
method. We will then discuss applicability of the FRANC3D/STAGS program in
evaluating T -stress for two-dimensional as well as thin-shell problems.

6.1 Introduction

The second term of the elastic asymptotic stress series near a crack tip [146], often
called T -stress, is known to have signi�cant in
uence on crack growth direction
and crack path stability [46, 103, 26]. In addition the T -stress is also known to
have a strong in
uence on crack-tip constraint [38, 98]. To obtain an accurate
T -stress for complex geometries subjected to arbitrary loading thus becomes an
important task for fracture analysis assessment.

Several numerical methods have been used to evaluate the T -stress [76, 77, 67,
123, 129]. An earlier study by Larsson and Carlsson [76] determined the T -term
from two �nite element solutions, one with aK-�eld and the other with actual load-
ing and geometry con�gurations. Leevers and Radon [77] computed the T -stress
by incorporating the eigenfunctions from Williams [146] in a variational formula-
tion. Sham [123] used second order weight functions through a work-conjugate
integral to calculate the T -term.

To compute T -stress in conjunction with �nite element analyses, a path inde-
pendent integral similar to the J-integral [42, 114] for stress intensity factors is
highly desirable. Cardew et al. [16] and Kfouri [67] presented a novel J-integral
type of path independent integral for computing the T -term from �nite element
analyses. Recently, another type of path independent integral for T -stress compu-

106
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tation based on the Betti-Rayleigh reciprocal theorem has been proposed [129, 151].
Due to its simplicity, the Betti-Rayleigh reciprocal type of conservative integral has
been widely used to solve crack and notch problems for homogeneous as well as
bimaterial bodies [131, 127, 8]. As will be shown in this study, these two path
independent integrals are analytically equivalent.

To our best knowledge, none of the previous studies has fully addressed the
accuracy of numerical T -stress computations. Published values vary between three
and �ve percent for identical loading and geometry con�gurations and the error
for the computed T -stress is generally unknown. It is well known that to increase
the accuracy of a �nite-element computation, either the mesh has to be re�ned
(h-version) or the polynomial degrees of the shape functions have to be increased
(p-version). A combination of both strategies, referred to as the hp-version of
the �nite element method, is known to show exponential rates of convergence in
energy norm even if the problem has singularities [6]. In our contribution we will
show that path independent integrals, in conjunction with hierarchical, p- and
hp-version �nite element methods [141], provide a powerful tool to obtain highly
accurate numerical results for T -stress. Using a novel error estimator for the T -
stress, the accuracy of the computation is quanti�ed and assessed.

6.1.1 Outline for Numerical Assessment of T -stress Com-

putation Using a p-version Finite Element Method

The derivations of path independent integrals for T -stress are studied in Sec-
tion 6.2. Finite element implementations of equivalent domain integrals in con-
junction with the hierarchical p-version �nite element method are discussed in
Section 6.3. To quantify the error in computing T -stress using the path indepen-
dent integrals, an error estimator is proposed. Using a highly accurate hp-version
�nite element code [74] a benchmark example with various KI and T imposed
boundary conditions is studied in Section 6.4 with the goal being to assess the
accuracy of the numerical computation of T -stress. We then compute values of
T -stress for various well known fracture specimens and compare our results with
values from the literature.

6.2 Path Independent Integral For T -Stress Com-

putation

Two types of path independent integrals for T -stress evaluation have recently been
proposed. One is based on the Betti-Rayleigh reciprocal theorem [129, 151] and
the other is based on Eshelby's energy momentum tensor [16, 67]. For the Betti-
Rayleigh reciprocal type of conservative integral, we will detail the derivation be-
cause of its relative ambiguity in the literature. For Eshelby type integrals, we will
brie
y outline the formulation in Cardew et al. [16] and discuss their analytical
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equivalence to the Betti-Rayleigh reciprocal type of conservative integral.

6.2.1 Construction of Path Independent Integral for T -

Stress Using Betti-Rayleigh Reciprocal Theorem

The Betti-Rayleigh reciprocal theorem states that \for a hyperelastic body subject
to two in�nitesimal systems of body and surface forces, the work done by the �rst
system in the displacement caused by the second equals the work done by the
second in the displacement caused by the �rst" [83]. For elastostatic problems,
the body forces fi and surface tractions ti produce displacements ui. The body
forces f �i and surface tractions t

�
i produce displacements u

�
i and are called auxiliary

�elds. From the results of divergence theorem, assuming su�cient smoothness of
the functions and the boundaries of the body, we can prove the Betti-Rayleigh
reciprocal theorem:
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where A is the bounding surface of the body, dA is an in�nitesimal element of the
surface, V is the volume of the body, and dV is an in�nitesimal element of the
volume. For a two-dimensional case without body forces, Equation (6.1) reduces
to: I

S

(t�iui � tiu
�
i ) dS = 0 (6.2)

where S is the bounding curve of the body and dS is an in�nitesimal segment of
the curve.

To construct a path independent integral for a two-dimensional elastic body
with a crack using the Betti-Rayleigh reciprocal theorem, the procedure outlined
by Stern et al. [131] is followed. First consider a contour integral along a closed
path (C, C+, C�, and C�) as shown in Figure 6.1. From Equation (6.2), we have:

x

Z
C

(t�iui � tiu
�
i )dC+!

Z
C+

(t�iui � tiu
�
i )dC++y

Z
C�

(t�iui � tiu
�
i )dC�

+ 
Z
C�

(t�iui � tiu
�
i )dC� = 0 (6.3)

Since C+ and C� are traction free, we have

x

Z
C

(t�iui � tiu
�
i )dC =x

Z
C�

(t�iui � tiu
�
i )dC� (6.4)

Equation (6.4) proves the path independence of the contour integral. With ti =
�ijnj where �ij are components of the stress tensor and nj are components of the
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Figure 6.1: A closed contour in the neighborhood of a crack tip.

outward pointing normal vector of the contour, Equation (6.4) can be expressed
as:

x

Z
C

(��ijui � �iju
�
i )njdC =x

Z
C�

(��ijui � �iju
�
i )njdC� (6.5)

Due to its path independent nature, the integral on the left hand side of Equa-
tion (6.5) can be evaluated on a contour away from the crack tip where numerical
solutions can be used for �ij and ui without losing too much accuracy. The integral
on the right hand side of Equation (6.5) is evaluated analytically as �!0 [8].

Let (x, y) be the local Cartesian coordinates and (r, �) be the local polar
coordinates centered at the crack tip. For two-dimensional elastic crack problems,
Williams [146] derived a set of solutions for stresses and displacements that satisfy
the equilibrium and compatibility equations near a crack tip (cf. Equations (5.2){
(5.8)):

�ij =
+1X

�=�1
A� r

�

2 f�ij(�) (6.6)

ui =
+1X

�=�1
B� r

�

2
+1 g�i (�) (6.7)

where �
2
is the eigenvalue of the problem and A� and B� are coe�cients of the

asymptotic expansions. In order to obtain coe�cients of a particular order of �
2

alone, the auxiliary �elds required in the reciprocal work relation in Equation (6.5)
are:

��ij � r�
�

2
�2 u�i � r�

�

2
�1 (6.8)

The question arises how to extract the contributions of T -stress from above se-
ries expansions, without contributions from singular and other higher order terms.
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Considering Equation (6.8), the idea is to choose auxiliary �elds so that ��ij � r�2

and u�i � r�1 to cancel all contributions from the �rst, singular terms of the
expansions in Equation (6.5) to the T -stress term. The auxiliary stresses and
displacements in local Cartesian coordinates are:

��xx =
cos 2� + cos 4�

2 � r2
(6.9)

��yy =
cos 2� � cos 4�

2 � r2
(6.10)

��xy =
sin 4�

2 � r2
(6.11)

u�x = � 1

4 � r
� � cos � + cos 3�

2G
(6.12)

u�y = � 1

4 � r
� �� sin � + sin 3�

2G
(6.13)

where G is the shear modulus, and � = (3� �)=(1 + �) for plane stress problems
and � = (3� 4�) for plane strain problems.

It is clear that with such auxiliary �elds, other higher order terms in stress and
displacement expansions result in no contribution to the contour integral as r!0.
With some algebraic manipulation, it is possible to show that no contribution
occurs from the singular terms, and

T = eE xZ
C�

(��ijui � �iju
�
i )njdC� as �!0 (6.14)

where eE = E for plane stress problems and eE = E=(1 � �2) for plane strain
problems in which E is Young's modulus.

As a result, T -stress is readily computable by combining Equations (6.5) and
(6.14) with �nite element analyses:

T = eE xZ
C

(��iju
FE
i � �FEij u�i )njdC (6.15)

where uFEi and �FEij are stresses and displacements of a �nite element solution.

6.2.2 Construction of Path Independent Integral for T -

Stress Using Eshelby's Energy Momentum Tensor

Another type of path independent integral, following Eshelby, has been proposed
for T -stress computations [16, 67]. The formulation uses auxiliary �elds from point
force loading in conjunction with �nite element results. The T -stress is obtained
by combining a common J-integral with a J-integral of superimposed auxiliary
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Figure 6.2: Point force applied at crack tip.

�elds from the point force solutions. A brief outline of the formulation is given
below.

Considering a point force at the crack tip in a in�nite body (Figure 6.2), the
stress �elds in local Cartesian coordinates are:

�xx = � f

� r
cos3 � (6.16)

�yy = � f

� r
cos � sin2 � (6.17)

�xy = � f

� r
cos2 � sin � (6.18)

Let F denote the two-dimensional elastic solution near the crack tip and F the
solution from the point force. The J-integral of the superimposed state of F and
F can be expressed as:

J(F; F ) =x

Z
C

�
1

2
(�ik + �ik)(eik + eik)�xj � (�ij + �ij)(ui;x + ui;x)

�
nj dC (6.19)

where eik are components of the strain tensor.
By expanding the expression, one can show that J(F; F ) in Equation (6.19) is

equivalent to

J(F; F ) = J(F ) + J(F ) + Jx (6.20)

in which J(F ) is the well known J-integral for stress intensity factor computation,
J(F ) is the J-integral of the point force solutions, and

Jx =x

Z
C

�
1

2
(�ikeik + �ikeik)�xj � (�ijui;x + �ijui;x)

�
nj dC (6.21)

is the integral associated with the \cross-terms". From the derivations in [16] and
[67], we have:

J(F ) = 0 and Jx =
TfeE (6.22)
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By rearranging Equation (6.20), we obtain a conservative integral for T -stress:

T =
eE
f

�
J(F; F )� J(F )

�
(6.23)

In [67], the point force solution was obtained from an additional �nite element
calculation. This implies that for a speci�c problem, two �nite element compu-
tations need to be performed to obtain T -stress. In this study, we will use the
analytical �elds directly from the point force solution to evaluate T -stress. The
displacement derivatives with respect to x and y for the point force auxiliary �elds
are:

ux;x = � f

4 � r

� cos � + cos 3�

2G
(6.24)

uy;x = � f

4 � r

�� sin � + sin 3�

2G
(6.25)

ux;y = � feE� r (1 + cos2 � + ~� cos2 �) sin � (6.26)

uy;y =
feE� r (� sin2 � + ~� cos2 �) cos � (6.27)

and the T -stress can be readily evaluated from Equation (6.23) using a �nite
element solution and analytical stress and displacement derivative �elds of the
point force.

6.2.3 Analytical Equivalence between Betti's Reciprocal

and Eshelby Integrals

To prove that both types of contour integrals for T -stress are analytically equiva-
lent, we �rst observe that:

ui;x = u�i
�ij;x = ��ij

by setting the point force equal to one. Substituting this relationship into Equa-
tion (6.14), we have:

TeE = x

Z
C

(��ijui � �iju
�
i )nj dC

= x

Z
C

(�ij;xui)nj dC� x
Z
C

(�ijui;x)nj dC (6.28)

From chain rules, we have (�ijui);x = (�ij;xui) + (�ijui;x) and Equation (6.28)
becomes:

TeE =x

Z
C

(�ijui);xnj dC� x
Z
C

(�ijui;x)nj dC� x
Z
C

(�ijui;x)nj dC (6.29)
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By applying divergence theorem and recalling �ij;j = 0 and eij =
1
2
(ui;j + uj;i),

the �rst term in Equation (6.29) can be expressed as:

x

Z
C

(�ijui);xnj dC =

ZZ
A

(�ijui);xj dA

=

ZZ
A

�
(�ijui);j

�
;x
dA

= x

Z
C

(�ikeik�xj)nj dC

= x

Z
C

1

2
(�ikeik + �ikeik)�xjnj dC (6.30)

Substituting Equation (6.30) into Equation (6.29), we then prove the analytical
equivalence between Betti-Rayleigh reciprocal and Eshelby type of contour inte-
grals.

6.3 T -Stress Evaluation Using Finite Element

Analyses

6.3.1 Equivalent Domain Integral

The conservative line integrals for T -stress derived above may not always be suit-
able for use directly with results obtained by standard �nite element methods. A
procedure that converts a line integral into an equivalent area (or domain) integral
by means of Gauss integral theorem is usually employed. The equivalent domain
integral is known to have higher accuracy in extracting the desired integral values
from given standard �nite element solutions [78, 7].

Following Li et al. [78], for cracks in homogeneous bodies, the integrals in
Equations (6.15) and (6.23) can be converted into their equivalent domain integrals
over a closed area A. For the Betti-Rayleigh reciprocal type of contour integral,
the counterpart is given by:

T = eE ZZ
A

(�FEij u�i � ��iju
FE
i ) q;jdA (6.31)

For an Eshelby type contour integral, the domain integral is given by:

T =
eE
f

�
J(F; F )� J(F )

�
=

eE
f

�ZZ
A

�
(�FEij + �ij)(u

FE
i;x + ui;x)� (W FE +W )�xi

�
q;jdA

�
ZZ

A

�
�FEij uFEj;1 �W FE�xi

�
q;jdA

�
(6.32)
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Figure 6.3: An equivalent domain integral.

where the area A is a region as illustrated in Figure 6.3 and the function q is taken
to be unity on �0 and zero on �1. To quantify our computed results, we denote
r0 and r1 as the distances from the crack tip to �0 and �1 along the � = 0 ray,
respectively. The distance r1 will be used to characterize the integration domain.

6.3.2 Hierarchical p-version Finite Element Method

To evaluate Equations (6.31) and (6.32) we compute displacements, strains and
stresses using a hierarchical p-version �nite element method. A comprehensive
description of the discretization properties as well as implementation details of the
\p-version" can be found e.g. in [141]. We like to recall as an important property
that, for problems with singularities, p-extensions converge with exponential rate
if the mesh is properly re�ned towards the singularities.

The element formulation used to obtain the results presented in Section 6.4
restricts us to a standard, hierarchical polynomial basis for the �nite element test
and trial spaces. Although it is possible to introduce singular terms by the quarter-
point mapping technique into hierarchical p-version formulations [109] these terms
are less relevant for T -stress extraction.

The use of high order p-version elements allows domain integrals to be com-
puted during the postprocessing step on an integration mesh that can be completely
independent from the �nite element mesh. Examples for two di�erent possibilities
of postprocessing meshes are shown in Figure 6.4(a) and (b). If the solution is of
su�ciently high quality so that jumps in the stresses are small, it is even possible to
have elements of the integration mesh reaching over more than one element of the
discretization without signi�cant loss in accuracy of the domain integral. In this
case, an additional step of locating the gauss points of the integration element in
the corresponding �nite element would become necessary but the implementation
can be integrated much easier in a CAD environment.

Numerical experiments show that it is not possible to reliably compute T -stress
inside the elements directly adjacent to the crack tip. This is because, no matter
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(a) independent (b) direct

Figure 6.4: Postprocessing meshes for domain integral.

how strong the mesh re�nement towards the singularity is, the solution in the
elements directly adjacent to the singularity can oscillate [111]. The oscillation
behavior is restricted to the crack tip elements and to a lesser degree for the �rst
layer of elements outside the crack tip elements. If the discretization error in the
remaining domain is reduced su�ciently, then path independence can be observed
in the numerical results. Therefore the domain integral can always be computed
in the �rst or second layer outside the crack tip elements.

To remove dependency of the obtained results from the error introduced by
numerical integration we choose the number of integration points in each direction
to be 15 for all values of p-extensions in all our computations. The additional
computational cost for postprocessing of fracture parameters is orders of magni-
tude less than the cost of the solution process and can be neglected. With this
high integration order, numerical equivalence of the Betti-Rayleigh reciprocal and
Eshelby type contour integrals can be directly observed. It may �nally be noted
that, using high order p-elements, it is very well possible to obtain high quality
results for T -stress directly from contour integrals removing the need for this kind
of postprocessing completely.

6.3.3 Error Analysis and Accuracy Assessment

In theory, the contour integrals developed herein are path independent. The �nite
element approximation, however, inevitably introduces discretization error. The
quality of the obtained J-integral or T -stress results does therefore depend on
the location where the path independent integral has been evaluated. Thus, it is
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important to quantify the error in computing T -stress using the path independent
integrals and furthermore assess the accuracy of the obtained numerical results.

For a given �nite element model, the di�erence between the exact and �nite
element solutions is the discretization error. Thus, taking the Betti-Rayleigh re-
ciprocal type contour integral for example, the error for T -stress, eT = jT � T FEj
at a certain integration path C is given as:

eT = eE jxZ
C

(��ijui � �iju
�
i )njdC�x

Z
C

(��iju
FE
i � �FEij u�i )njdC j

Because of the di�erent convergence rates for singular and non-singular terms
in the solution, we shall observe that the discretization error is dominated mainly
by the singular terms, if we extract our results in the singular-dominant zone.
Thus we may postulate that the error of computed T -stress for Mode I problems
(the e�ect of Mode II will be discussed later) in an integration domain r1 away
from the crack tip is:

eT � ~e � KIp
r1

(6.33)

where ~e is a constant term related to the discretization error for a given discretiza-
tion with a �xed polynomial degree of the shape functions. That is, the ratio of
KI=
p
r1 can be factored out in eT similar to the asymptotic stress expansion. The

relative error in T -stress

eTrel =
jT � T FEj

T
� ~e � KI

T
p
r1

(6.34)

scales with KI=(T
p
r1). From Equation (6.34), we shall anticipate that the ac-

curacy of the computed T -stress can be improved predominately by reducing the
discretization error ~e, or by increasing the size of the integration zone (which may
not always be practical). The assertion that the relative error in T -stress scales
with the dimensionless parameter KI=(T

p
r1) is also supported by the following

observation: geometrically similar �nite element models which di�er only in scale
(which implies that the integration path is likewise scaled) should give numerically
identical error fractions in the computed T -stress (or any local stress measure-
ment).

We shall �nally note that Equations (6.33) and (6.34) provide a powerful and
useful measurement to study the accuracy of T -stress computations for �nite el-
ement analyses, as will be revealed in the following numerical results. One can
certainly use the property of this error estimator to calibrate and regularize the
computed T -stress for other standard, low-order p �nite element codes, but this is
beyond our discussion in this study.
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Figure 6.5: Benchmark example for T -stress computation: (a) numerical model
and (b) mesh with 6 layers of re�nement (only 2 visible as shown)

6.4 Numerical Results

6.4.1 A Simple Benchmark Example

In order to evaluate the accuracy of the proposed algorithm and its numerical
outcome, it is desirable to compare it with an exact solution. Few exact solutions
are known for the T -stress. For convenience, a problem with a simple geometry
was chosen, with boundary conditions applied simulating arbitrary values of KI ,
KII , and T . Since exact solutions are known, the problem may serve as a simple
benchmark to study the accuracy of T -stress computations.

6.4.1.1 Numerical Model

As shown in Figure 6.5(a) an edge cracked square plate with a=L = 0:5 was mod-
eled. Stresses obtained from the KI , KII, and T related terms of the asymptotic
expansion according to Equations (5.4), (5.5), and (5.6) were imposed as bound-
ary conditions on the boundaries B2, B3, and B4, while the crack edges B1 remain
traction free. Thus the model represents a variant of an internal crack in an in�nite
plate under remote loading, such that KI , KII , and T can be varied independently.
Because no body forces are present, the system is in equilibrium and the solution
does exist. In addition to ensure uniqueness of the solution, displacement boundary
conditions to prevent rigid body motions have to be prescribed (Figure 6.5(a)). A
�nite element mesh was constructed with six layers of re�nement towards the crack
tip resulting in a total of 52 elements (Figure 6.5(b)). The mesh was geometrically
re�ned towards the crack tip with a progression factor of 0:15 as recommended in
[140].



118

6.4.1.2 Numerical Results and Discussion

For three di�erent load combinations KI=T = 0:1, KI=T = 1:0 and KI=T = 10:0
uniform p-extensions were performed, i.e. the polynomial degree p was changed for
all elements uniformly between 1 and 11. The largest discretization with p = 11
had 6169 degrees of freedom. In the postprocessing step of all computations the
discretization error in energy norm jjejj, the error in KI and the error in T were
computed.

The �rst observation to be made from the results is that the T -stress values
computed from Betti-Rayleigh reciprocal and Eshelby type integrals coincide for
all computations and all degrees of p up to machine accuracy. The equivalence
proven in Section 6.2.3 is therefore also visible in the numerical results, if the
integration order for the domain integral is su�ciently high.

In Table 6.1 values for the J-domain integral, KI , and T -stress, computed on
four di�erent integration domains are tabulated. The domains are coincident with
the �rst to the fourth layer of elements surrounding the crack tip elements. The
load parameter KI=T was 1:0 and the polynomial degree of the elements was p = 6
corresponding to 1899 degrees of freedom. Since the discretization error is virtually
non-existent for this case, path independence of KI obtained from J as well as the
T -stress term can be observed.

In Figure 6.6(a){(c) convergence curves of computed T -stress values are shown
for various KI=T combinations. In each �gure the error in T -stress computed on
the �rst layer (L1, r1 = 7:59375� 10�5) and the second layer (L2, r1 = 5:0625�
10�4) of elements outside the crack tip is plotted over the number of degrees of
freedom. Each mark indicates a polynomial degree p. As an indication of the global
convergence behavior of the solution, the error in energy norm is also plotted for
all load combinations. While the energy norm curves show the typical S-shape (i.e.
exponential convergence rates until p equals the number of re�nement layers), the
curves for the T -stress show exponential convergence rates throughout the entire
p-range. It is further observed that, for constant r1, the relative error in T -stress
increases with KI=T but, as apparent in Table 6.2, the convergence rate is exactly
the same for all loading values as we shall expect from Equation (6.34). Finally
it is also observed that curves for computation of T -stress on the second layer
outside the crack tip elements are slightly smoother, especially for low orders of
p, indicating that oscillatory behavior of the solution is restricted to the crack tip
and �rst layer of elements.

Table 6.2 summarizes the computed errors of KI , T and the energy norm on
the �rst layer of elements away from the crack tip for all three KI=T ratios. From
these values it becomes apparent that the relative error in KI is independent of
KI=T . The convergence rate of the relative error in energy norm calculated at
p = 4 and p = 8 from

� =
log( jje8jjjje4jj)

log(N8

N4
)
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Table 6.1: Numerical Path Independence of J , KI , and T for p = 6 and KI=T = 1
for Benchmark Example

Path r1 J-domain KI T

4 2:25� 10�2 0.91012 1.0001 0.9997
3 3:375� 10�3 0.91019 1.0001 0.9993
2 5:0625� 10�4 0.91026 1.0001 0.9980
1 7:59375� 10�5 0.91032 1.0002 0.9942

*plane strain problems with E = 1:0 and � = 0:3

is � = �2:15 for KI=T = 1 which is about the same as � = �2:2 for K=T = 10.
We further evaluated the model with various values of KI , T , and r1 for var-

ious p-extensions to obtain the results plotted in Figure 6.7. Both the order of
p and KI=(T

p
r1) are seen to have a signi�cant e�ect on the accuracy of the so-

lution. The results are expected from Equation (6.34), since the relative error in
T -stress is proportional to the discretization error ~e and the dimensionless parame-
ter KI=(T

p
r1). We �nally note that with p = 11, a relative error in the calculated

T -stress approaching 1� 10�6% is achieved.
In the process of simulations, various KII=KI ratios were also evaluated, and

the e�ect of KII was found to be negligible for values up to KII=KI = 100. Thus
the e�ect of KII was not given further consideration in this study.

From the above we observe that for problems where T -stress is small com-
pared to KI , it is more di�cult to accurately evaluate. Perhaps most signi�cantly,
the above exercise identi�es the conditions under which we may with con�dence
calculate T -stress with very high accuracy.

6.4.2 Fracture Specimens

In this section, the numerical results for various fracture specimens are evaluated.
This serves two purposes: one is to demonstrate that the convergence and accu-
racy of computed T -stress can be observed easily with the p-extensions, and the
other is to compare our results for various fracture specimen con�gurations with
numerical values from the literature. We detail our results for double cantilever
beam (DCB) specimens due to its practical importance in obtaining an accurate
T -stress to characterize crack turning behavior [103]. For other fracture specimens,
we tabulate our computed T -stress for comparison.

6.4.2.1 Double Cantilever Beam (DCB) Specimen

DCB fracture specimens are known to have large positive T -stress that may cause
crack path instability under pure Mode I conditions [46, 26]. In order to compare
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Table 6.2: Relative Error of KI and T Computed at Integration Domain on First
Layer Away From Crack Tip and Relative Error in Energy Norm for
Benchmark Example

r1 = 7:59375� 10�5, KI=T = 1=10
relative error (%)

p DOFs
KI T jjejj

4 919 0:456 0:7693 0:0781
8 3295 4:3810� 10�4 2:7548� 10�3 0:004
11 6169 8:1660� 10�5 3:0� 10�5 0:002

r1 = 7:59375� 10�5, KI=T = 1=1
relative error (%)

p DOFs
KI T jjejj

4 919 0:456 7:693 0:656
8 3295 4:3810� 10�4 2:7548� 10�2 0:042
11 6169 8:1650� 10�5 2:9995� 10�4 0:022

r1 = 7:59375� 10�5, KI=T = 10=1
relative error (%)

p DOFs
KI T jjejj

4 919 0:456 76:93 1:4675
8 3295 4:3810� 10�4 0:27548 0:073
11 6169 8:1660� 10�5 2:996� 10�3 0:046

*results are independent of the length units associated with r1 and KI=T
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Figure 6.6: Convergence of T -stress and energy norm for the benchmark example.
T -stress values are computed on the �rst layer (L1, r1 = 7:59375�10�5)
and the second layer (L2, r1 = 5:0625� 10�4) of elements outside the
crack tip.
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Figure 6.7: Accuracy assessment with p-extension for the benchmark example: (a)
the relative error of calculated T -stress, eTrel, versus dimensionless pa-
rameter KI=(T

p
r1), and (b) the ratio of eTrel over KI=(T

p
r1) versus

the polynomial degree of the shape functions, p.

numerically computed T -stress values to those found in the literature, a DCB
con�guration shown in Figure 6.8(a) with h=w = 0:2 and a=w = 0:5 was modeled.
Again a �nite element mesh with six layers of re�nement towards the crack tip was
constructed, as shown in Figure 6.8(b). To eliminate any in
uence of perturbations
from point forces the load was introduced as distributed forces along one half of
the hole edges.

With the mesh �xed, a p-extension was performed, i.e. p was increased between
1 � p � 11. The discretization at p = 11 had 9277 degrees of freedom and, because
no analytical solutions are available for this specimen, it was used as a reference
solution. KI and T were computed in two di�erent domains corresponding to the
�rst and second layer of elements away from the crack tip with r1=a = 2:025�10�4
and r1=a = 1:35�10�3. We note that the value of the error parameter KI=(T

p
r1)

for the integration domain at the �rst layer is 42:2; thus the relative error of the
reference solution is estimated to be on the order of 10�5% based on Figure 6.7.

The convergence of the computed normalized KI and T -stress values can be
observed in Figure 6.9 and Figure 6.10, respectively, where for each polynomial
degree from p = 3 to p = 8, KI and T -stress computed on the two integration
domains are plotted. For engineering accuracy, i.e. to obtain a relative error of 1
percent in T -stress, a degree of p = 6 corresponding to 2917 degrees of freedom
is necessary. Again path independence of the computed integrals can be observed
from p = 5 and up.

To compare our results with values from di�erent sources published in the
literature, a normalized stress biaxial parameter B de�ned in [77] is introduced
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Table 6.3: Computed Values of KI , T , and B for the DCB Specimen

DCB (a=w = 0:5; h=w = 0:2)

SOURCES KI

�
p
�a

T
�

B = T
p
�a

KI

Present (p = 11) 3:9225 11:5745 2.9508
Leevers and Radon [77] - - 2.942

Cardew et al. [16] - - 2.829
Kfouri [67] - - 2.956
Fett [45] 3:9307 11:5304 2.933

where

B =
T
p
�a

KI

(6.35)

Table 6.3 summarizes the normalized stress intensity factor KI= (�
p
�a), the nor-

malized T -stress, and B with p = 11 as well as computed values from [77, 16, 67,
45]. A di�erence of up to 4.2% in the results for B is observed in comparison with
the sources from the literature.

6.4.2.2 T -stress for Various Fracture Specimen Con�gurations

Computed T -stress in various fracture specimen con�gurations including middle
crack tension specimen (MT) and single edge notch specimen subjected to tension
(SENT) and pure bending (SENB) as shown in Figure 6.11 was evaluated. All the
meshes were constructed with six layers of re�nement towards the crack tip and a
progression factor of 0:15.

Table 6.4 summarizes our computed results forKI , T -stress, and B. The results
are compared with values from di�erent sources published in the literature.

6.4.3 Discussion: Numerical Assessment of T -stress Com-

putation Using a p-version Finite Element Method

Throughout the numerical examples, we have demonstrated that using the path
independent integrals with hierarchical, p- and hp-version �nite element methods
proves to be a powerful tool to obtain highly accurate numerical results for T -
stress. The convergence and accuracy of computed T -stress values are observed
easily and con�dently with the p-extensions in the benchmark example of known
exact solutions, and the error correlates reliably with the error estimator, KI=

p
r1.

It is thus inferred that the results presented for the fracture specimen geometries
are of comparable accuracy to the benchmark at equal values of KI=

p
r1, and are

thus numerically exact to the signi�cant digits given in the tables.
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Figure 6.8: (a) Double cantilever beam (DCB) specimen con�guration, and (b) a
hp-version �nite element model for DCB specimen with 6 layer re�ne-
ment (only 2 visible).
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126

Table 6.4: Computed Values ofKI , T , and B for MT, SENT, and SENB Specimens

SOURCES KI

�
p
�a

T
�

B = T
p
�a

KI

MT (2a=w = 0:3; h=w = 1:0)
Present (p = 11) 1:1232 �1:15536 �1:0286

Leevers and Radon [77] - - �1:0255
Cardew et al. [16] - - �1:026

Fett [45] - �1:1557 �1:028
Isida [61] 1:123 - -

SENT (a=w = 0:3; h=w = 12)
Present (p = 11) 1:6598 �0:61033 �0:36771

Sham [123] 1:6570 �0:61425 �0:37070
SENT (a=w = 0:5; h=w = 12)

Present (p = 11) 2:8246 �0:42168 �0:14929
Sham [123] 2:8210 �0:43142 �0:15293

SENB (a=w = 0:3; h=w = 12)
Present (p = 11) 1:1241 �0:079177 �0:070436

Sham [123] 1:1220 �0:082404 �0:073444
SENB (a=w = 0:5; h=w = 12)

Present (p = 11) 1:4972 0:39749 0:26549
Sham [123] 1:4951 0:39112 0:26160
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Figure 6.11: Various fracture specimen con�gurations used for T -stress computa-
tion.

6.5 FRANC3D/STAGS Results

Both the Betti-Rayleigh reciprocal and Eshelby types of domain integrals were
also implemented in the FRANC3D/STAGS software program. We note that the
polynomial degree of shape functions for the quadrilateral shell element used in
FRANC3D/STAGS is the lowest, i.e., p = 1. Thus, to obtain an acceptable
accuracy for T -stress, we need to introduce a highly focused mesh near the crack
tip and/or evaluate the domain integral su�ciently away from the crack tip.

6.5.1 Two-Dimensional Problems

The DCB specimen was studied using FRANC3D/STAGS. An all-quadrilateral
element meshing algorithm developed by Potyondy et al. [107] was used to generate
a graded mesh with a high mesh density near the crack tip and coarser away from
the crack tip. Figure 6.12 shows a graded �nite element mesh with a crack tip
template. Computed values of KI and T evaluated at the third layer away from
the crack tip (r1=a = 0:02) are within 0.8 and 1.2% of the reference solutions in
Table 6.3, respectively.
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crack tip template

Figure 6.12: A focused �nite element mesh used in FRANC3D/STAGS.

6.5.2 Thin Shell Problems

The methods developed herein are mainly for two-dimensional linear elastic prob-
lems. Further study is needed to derive its Lagrangian counterpart for shell struc-
tures subjected to large displacements and rotations.

6.6 Summary

Two types of path independent integrals for T -stress computations, one based
on the Betti-Rayleigh reciprocal theorem and the other based on Eshelby's en-
ergy momentum tensor were studied. Analytical as well as numerical equivalence
between the two integrals was found. To quantify and assess the accuracy of com-
puted values, a novel error estimator for T -stress was proposed. Speci�cally, it
was found that the error of the computed T -stress is proportional to the ratio of
stress intensity factor divided by the square root of the characteristic dimension of
the integration domain where the path independent integral is evaluated. Using a
highly accurate hierarchical p- and hp-version �nite element code, the convergence
and accuracy of computed values were observed easily and con�dently, and the er-
ror of the computed T -stress correlated reliably with the proposed error estimator.
We conclude that the path independent integrals, in conjunction with hierarchical,
p- and hp-version �nite element methods, provide a powerful tool to obtain highly
accurate numerical results for T -stress.

We then evaluated numerical results using the FRANC3D/STAGS program.
Because the polynomial degree of the shape functions of the shell elements was the
lowest (i.e., p = 1), a highly focused mesh near the crack tip and a remote inte-
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gration path were needed to extract the T -stress from the �nite element solutions
without losing too much accuracy. Numerical results showed that the errors in T -
stress for DCB specimens could be kept well below 2% using FRANC3D/STAGS.



Chapter 7

Curvilinear Crack Growth

Simulations

Curvilinear crack growth in coupon tests and in full-scale curved panel tests are
analyzed in this chapter. Crack growth direction is predicted using the directional
criteria developed in Chapter 5. The predicted crack trajectories are compared
with those observed in the tests.

7.1 Curvilinear Crack Growth Simulations For

DCB Fracture Specimens

Simulations of crack growth in double cantilever beam (DCB) fracture specimens
were performed. The predicted crack trajectories were compared with the exper-
imental measurements. Among all the possible parameters that could a�ect the
crack trajectory prediction, only T -stress, rc, fracture toughness orthotropy, and
the length of the crack growth increment were examined.

7.1.1 Description of Experiment

DCB specimens made of 0.09 inch thick, 2024-T3 aluminum alloy were tested at
the NASA Langley Research Center in cooperation with the McDonnell Douglas
Company (now Boeing). A brief description of the tests is presented below. More
information about the fracture tests can be found in [103, 101, 104].

The dimensions and material properties of the test specimens are shown in Fig-
ure 7.1. Stable crack growth in the L-T and T-L orientation under a monotonically
increasing load was conducted. Fatigue crack growth in the L-T orientation under
a low stress level of cyclic loading was performed. The test matrix is summarized
in Table 7.1. Only one test per con�guration was performed.

The �nal cracked con�gurations in the L-T orientation are shown in Figure 7.2.
The crack path observed in stable crack growth was di�erent from that in fatigue
crack propagation. For specimens under stable tearing, the crack turned sharply

130
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Figure 7.1: The DCB specimen con�guration.

Table 7.1: Test Matrix for DCB Specimens

Specimen ID Initial Crack (in.) Type of Crack Growth

2024LT-4 5.507 stable tearing
2024TL-5 5.47 stable tearing
2024LT-6 5.104 fatigue crack growth
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(a) (b)

Figure 7.2: (a) Stable tearing (2024LT-4) and (b) fatigue crack growth (2024LT-6)
in the L-T orientation observed in DCB specimens (after [101]).

away from its initial crack tip. For specimens subjected to fatigue loading, a much
smoother crack path was observed.

7.1.2 Description of Simulation

Curvilinear crack growth analyses were conducted using the FRANC3D/STAGS
software program. As described in Section 1.3, to simulate crack growth where
the crack trajectory is not known a priori, continual updating of the geometry is
required. The procedure of simulating crack growth consists of the following steps
[106, 108]:

step 1: generate a STAGS �nite element model from FRANC3D.

step 2: obtain the equilibrium state by executing the STAGS code.

step 3: compute the fracture parameters and determine the direction of crack
growth.

step 4: decide the amount of crack growth extension and propagate the crack.

The process is repeated until a suitable termination condition is reached. The
crack growth alters the geometric model in FRANC3D and leads to localized mesh
deletion. The deletion region is remeshed automatically using an all-quadrilateral
element meshing algorithm [107].
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Stress intensity factors, KI and KII , were computed using the equivalent do-
main J integral with the mode-separation method [15]. T -stress was computed
using the equivalent domain integral method derived from the Betti-Rayleigh re-
ciprocal theorem (Equation (6.15)). Several integration paths about the crack tip
were evaluated to assure the accuracy of the computations. The propagation angle
was predicted based on the maximum tangential stress theory developed in Chap-
ter 5, that is, Equations (5.17) and (5.24) for the isotropic and orthotropic media,
respectively. We assumed that both fatigue and stable crack growth in the DCB
specimens can be analyzed using linear elastic fracture mechanics (LEFM). This
assumption may not hold for stable crack growth. We will further discuss this
issue in Section 7.3.

7.1.3 Numerical Results

7.1.3.1 E�ect of T -stress and rc

The specimens under stable crack growth were analyzed �rst. The crack was grown
in 0.2 inch increments. Crack growth direction was predicted by the isotropic di-
rectional criterion, i.e., Equation (5.17). Figure 7.3 depicts four predicted crack
trajectories with various magnitudes of rc and the experimental measurements.
Figure 7.4 shows the computed deformed shapes and the corresponding �nite ele-
ment meshes used in curvilinear crack growth simulations. Predicted and measured
results shown in Figure 7.3 indicate that:

1. The predicted crack path for rc = 0 coincides with the straight line ahead of
the initial crack. For this special case, we note that the directional criterion
reduces to the Erdogan and Sih's criterion [41].

2. For rc = 0:05 inch, the predicted crack path initially follows a zigzag along
the straight path, but deviates from it at about 1.6 inches of crack extension.

3. For rc � 0:06 inch, predicted crack paths turn sharply away from the initial
crack tip.

4. The case with rc = 0:09 inch best correlates the experimental data and
numerical results for stable tearing.

5. Notable di�erence between the measured crack paths in the L-T and T-L
orientations are observed.

Similar trends were observed for fatigue crack growth. Figure 7.5 plots three
predicted crack trajectories with various magnitudes of rc and the experimental
measurements. The case with rc = 0:06 inch best correlates the experimental data
and numerical results for fatigue crack growth.
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Figure 7.3: Predicted and measured crack trajectories for DCB specimen under
stable crack growth: (a) overall crack trajectories, and (b) crack paths
in the focused region (Equation (5.17) with various magnitudes of rc;
�a = 0.2 in.).
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(a) �a = 0:6 inch

(b) �a = 2:0 inch

Figure 7.4: Computed deformed shapes and the corresponding �nite element
meshes used in the curvilinear crack growth simulations in DCB spec-
imens (isotropic case with rc = 0.09 inch).
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Figure 7.5: Predicted and measured crack trajectories for DCB specimen under
fatigue crack growth (Equation (5.17) with various magnitudes of rc;
�a = 0.2 in.).

7.1.3.2 Length of Crack Growth Increment

For LEFM problems, no adaptive scheme is currently implemented to control the
length of curvilinear crack growth increment. Instead, during the simulation pro-
cess, the analyst needs to decide and specify the amount of crack extension at
the crack tip. To investigate possible e�ects of the crack growth increment on
crack trajectory prediction, the crack growth simulation was performed again with
�a = 0:1 inch for rc = 0:09 inch. The length of crack growth increment has a
minor e�ect on the crack trajectory prediction as shown in Figure 7.6.

7.1.3.3 Fracture Toughness Orthotropy

From the laboratory observation, the specimen in the L-T orientation turned
sharper than that in the T-L orientation under stable tearing. This is thought
to be related to the possible di�erence between the fracture resistance along the
transverse (T) direction compared to that along the longitudinal (L) direction.
In subsequent analyses, a simple elliptical function presented in Section 5.3.4 was
used to incorporate the e�ect of fracture orthotropy. The fracture toughness was
assumed to be 10% higher in the T than in the L direction. As shown in Fig-
ure 7.7, the predicted crack trajectory in the L-T orientation agrees better with
the experimental measurements than the isotropic prediction. However, the pre-
dicted trajectory in the T-L orientation deviates from the observed crack path.
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Figure 7.6: Predicted and measured crack trajectories for DCB specimen under
stable crack growth: e�ect of the length of crack growth increment
(Equation (5.17) with rc = 0:09 inch).

7.1.4 Concluding Remarks for Curvilinear Crack Growth

Simulation in DCB Specimen

Curvilinear crack growth in thin, metallic DCB specimens was studied. For this
speci�c con�guration, cracks showed a tendency to turn away from the initial
crack tip under pure Mode I conditions. The crack growth directional criterion,
incorporating the T -stress e�ect, was capable of capturing the essence of crack
turning under such circumstance. The predicted results were in good agreement
with the experimental measurements.

The fracture toughness orthotropy was introduced to explain the di�erence be-
tween the measured crack paths in the L-T and T-L orientations. The orthotropic
directional criterion showed some promise to correlate the experimental data, but
some disagreement between predicted and measured results was observed for the
specimen in the T-L orientation. One possible explanation is that the magnitude of
rc along the T direction may be di�erent than that along the L direction. Incorpo-
rating di�erent magnitudes of rc along T and L directions could certainly provide
better correlation with experimental results. But additional tests and analyses
need to be conducted to justify this assertion.
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Figure 7.7: Predicted and measured crack trajectories for DCB specimen under
stable crack growth: e�ect of the fracture toughness orthotropy (Equa-

tion (5.24) with rc = 0:09 inch; Kc(T)
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= 1.1; �a = 0.2 in.).
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Figure 7.8: Structural features of a narrow body fuselage panel (modi�ed after
[85]).

7.2 Curvilinear Crack Growth Simulations For

Fuselage Structures

Simulations of curvilinear crack growth in a generic narrow body fuselage panel
were performed. The predicted crack trajectories were compared with the mea-
sured values from a full-scale pressurization test. The problem demonstrates the
applicability of the direction criteria developed herein for predicting curvilinear
crack growth in fuselage structures.

7.2.1 Description of Experiment

A narrow body fuselage panel with tear straps, stringers, stringer clips, and frames
was tested by the Boeing Commercial Airplane Group. Skins and tear straps were
made of 0.036 inch thick, 2024-T3 clad aluminum alloy. Stringers, frames, and
stringer clips were made of 7075-T6 clad aluminum alloy. The tear straps were
hot-bonded to the skins at midbay and at each frame station. The structural
features of the test panel are shown in Figure 7.8. More information about panel
dimensions can be found in [106, 48].

The panel had a 5.0 inch initial saw cut in the T-L orientation centered on
the midbay tear strap and just above the stringer tear strap. The saw cut went
completely through both the skin and midbay tear strap. The panel was inserted
into a test �xture with a radius of curvature of 74 inches to match narrow body
airplanes. A cyclic pressure of 7.8 psi was applied to propagate the crack. During
the test, the positions of the crack tips were recorded. The detailed test data can
be found in [106].
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Figure 7.9: Finite element model for the narrow body fuselage panel.

7.2.2 Numerical Model

The entire curvilinear crack growth simulation consists of more than 20 inches of
crack extension. As a result, using a global-local hierarchical modeling approach
could require continual updating of the boundary conditions from the preceding
model in the hierarchy due to the crack growth. This would increase e�orts sub-
stantially in performing the numerical analyses. For this speci�c problem, only
internal pressure was applied to the structure, thus a simple numerical model us-
ing symmetric boundary conditions might su�ce to simulate the panel test.

In this study, a 4-stringer-bay wide and 2-frame-bay long panel was analyzed.
All structural components including skins, stringers, and frames were modeled
by quadrilateral shell elements. Each node of the shell element has six degrees
of freedom. A typical �nite element mesh used in the simulation is shown in
Figure 7.9.

Geometrically nonlinear analyses were performed. Pressure loading was applied
on the skin of the shell model. Symmetric boundary conditions were imposed on
all the boundary edges of the model to simulate a cylinder-like fuselage structure.
Uniform axial expansion was allowed at one longitudinal end. On this boundary
edge, an axial force equal to (PR=2) � L was assigned where P is the applied
pressure, R is the radius of the panel, and L is the arc-length of the edge.

7.2.3 Fracture Parameter Evaluation

Deformation and stress �elds near the crack tip were used to compute fracture pa-
rameters for crack growth simulations. The modi�ed crack closure integral method



141

was used to compute the membrane and bending stress intensity factors (KI , KII ,
k1, k2) [106, 142]. The crack growth directional criteria, Equations (5.17) and
(5.24) for the isotropic and orthotropic media, were used to predict the propaga-
tion angle in thin shell structures.

The equivalent domain integral method for T -stress developed in Chapter 6
is only valid for two-dimensional problems. The derivation of its counterpart for
shell structures subjected to large displacements and rotations is not yet available.
Instead, a simple displacement correlation method was used to evaluate the T -
stress [69, 134, 104].

7.2.4 Numerical Results

7.2.4.1 E�ect of T -stress and rc

The e�ect of T -stress and rc on crack trajectory prediction was studied �rst.
Crack growth direction was predicted by the isotropic directional criterion (Equa-
tion (5.17)). Figure 7.10 plots the predicted crack trajectories with rc = 0 and
rc = 0:09 inch as well as the experimental measurements. Figure 7.11 shows the
computed deformed shapes during curvilinear crack growth. Bulging caused by
the applied pressure is observed. Moreover, severe 
apping is predicted as the
crack turns. Figure 7.12 shows the computed stress intensity factors and T -stress
versus the half crack extension at the right crack tip. The sign conventions of
stress intensity factors follow those in [106]. Predicted results suggest:

1. The T -stress has a very mild in
uence on the early crack trajectory prediction
because of its small magnitude. But as the crack approaches the tear strap,
T -stress increases and plays an important role in the crack turning prediction.
For the case with rc = 0:09 inch, a sharp turning caused by T -stress is
predicted as the crack approaches the tear strap.

2. The computed fracture parameters for rc = 0 and rc = 0:09 inch are compa-
rable at the early stage of curvilinear crack growth. However, sharp turning
as the crack approaches the tear strap alters the deformation and stress �elds.
This drastically changes the computed values of fracture parameters.

3. Predicted crack paths from both numerical simulations at the right and left
crack tips are almost symmetric about the midbay, but the measured crack
paths are not. This observation gives a preliminary indication of the experi-
mental scatter that might occur in the panel test.

7.2.4.2 E�ect of Fracture Toughness Orthotropy

The predicted crack growth trajectories depicted in Figure 7.10 are comparable
to the experimental measurements, but with some discrepancy. The disagreement
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Figure 7.10: Comparisons between predicted and measured crack trajectories
(isotropic directional criterion with various magnitudes of rc).
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Figure 7.11: Computed deformed shapes during curvilinear crack growth (isotropic
case with rc = 0.09 inch, magni�cation factor = 2.0).
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Figure 7.13: Comparisons between predicted and measured crack trajectories
(isotropic and orthotropic cases with rc = 0:09 inch).

during early stages of crack growth might be related to the fracture toughness
orthotropy of the fuselage skins.

In subsequent analyses, the orthotropic directional criterion, i.e., Equation (5.24),
was used to predict the propagation angle. From the coupon test results, the frac-
ture toughness for this material and thickness was about 100 ksi

p
inch in the L

direction and 105{120 ksi
p
inch in the T direction [106]. Thus, the fracture tough-

ness was assumed to be 10% higher in the T than in the L direction. The predicted
crack trajectories with rc = 0.09 inch were compared with those from the isotropic
prediction and experimental measurements. As shown in Figure 7.13, during early
stages of crack growth, the predicted trajectories for the orthotropic case agree
better with the experimental measurements than the isotropic case. Crack growth
simulation with fracture orthotropy also predicts crack turning as the crack ap-
proaches the tear strap. Yet, when the crack grows further into the tear strap
region, the inclusion of fracture orthotropy adversely alters the crack path predic-
tion and does not predict 
apping as observed in the panel test.

Several possible reasons may explain why the current methodology including
the fracture toughness orthotropy does not predict the desired 
apping and should
be examined in future research:

1. Characteristic feature of fracture orthotropy in the tear strap region|The
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material orientation in the tear strap di�ers from that in the skin (i.e., the
transverse direction in the tear strap is along the longitudinal direction of
the skin and vice versa). As a result, the material characteristics in this over-
lapped region may behave like a quasi-isotropic material with less fracture
toughness orthotropy.

2. Occurrence of debonding between the skin and tear strap|In the current
model, we assume that the skin and tear strap are perfectly bonded. However,
as the crack grows into this region, the adhesive bond between the skin and
tear strap is likely to fail. This inevitably alters the local crack tip stress
�elds and would consequently a�ect the crack growth behavior.

3. Thin-shell representation of three-dimensional behavior|The thin-shell ap-
proximation does not capture all the three-dimensional complexities of the
problem in the vicinity of the tear strap, particularly in the crack tip region.
Further study on three-dimensional crack growth simulations is needed to
quantify the three-dimensional e�ect on crack turning prediction.

4. Sources of error from the computed fracture parameters|Accurate stress in-
tensity factor and T -stress evaluations in this region are crucial to predict
crack turning. Current crack growth simulations use a low-order polyno-
mial degree of shape functions for thin-shell �nite element analyses and use
a displacement correlation method to extract the T -stress term from the �-
nite element solutions. Further study using adaptive and higher order shell
�nite element analyses would improve the accuracy of numerical computa-
tion. Other numerical methods, for example, path independent integrals for
geometrically nonlinear shells would also improve the accuracy of fracture
parameter evaluations.

5. Validity of the LEFM approach|The crack growth directional criterion and
its subsequent curvilinear crack growth simulations explicitly assume that the
crack is grown under small scale yielding conditions. Yet, as the length of
the fatigue crack extends to a su�cient amount, stable tearing and extensive
plasticity are likely to occur. The active plastic zone and accumulated plastic
wake due to stable tearing would likely a�ect the crack growth prediction.

6. Validity of the magnitude of rc|In the current study, the parameter rc is as-
sumed to be a constant magnitude during the entire curvilinear crack growth
simulations. Also the same constant magnitude of rc is used in the T and L
directions. The magnitude of rc used in the current simulation (0.09 inch)
is mainly based on the predicted results that best correlate the crack tra-
jectories observed in the DCB tests and the isotropic results that predict
crack 
apping in the current fuselage model. Further study on the appro-
priate experimental methods and numerical simulations for determining the
magnitude of rc is needed to validate the current approach.
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7.2.5 Comparisons with Previous Studies

Potyondy et al. [106, 108] and Chen et al. [21] have reported numerical simulations
for this problem previously. Both studies analyzed early curvilinear crack growth
but did not address the issue of sharp turning as the crack approaches the tear
strap. It is, nevertheless, of interest to compare these results with the current
prediction. This serves two purposes: one is to assess the accuracy of the simulation
through comparisons with independent numerical simulations and the other is
to show alternate modeling representations that may a�ect the crack trajectory
prediction.

In Potyondy et al. [106, 108] and Chen et al. [21], a global-local hierarchical
modeling approach was used to model the panel test. Three hierarchical modeling
levels were employed, comprised of a global shell model, a 6x6 bay sti�ened panel
model, and a 2x2 bay sti�ened panel model. Crack growth was only performed
in the 2x2 bay model, the lowest level in the hierarchy. The kinematic boundary
conditions on the 2x2 bay model were not updated during crack growth. Also, the
boundary conditions applied to the global shell model corresponded with an open
cylinder. Thus, the longitudinal stress in this numerical model is expected to be
less than that in the test �xture, since the test �xture is a closed cylinder.

The directional criterion used in Potyondy et al. and Chen et al. corresponds
to the Erdogan and Sih directional criterion [41], i.e., Equation (5.18); thus com-
parisons are made with the isotropic prediction with rc = 0. Figure 7.14 shows the
predicted crack growth trajectories from previous and current studies as well as
experimental measurements. We note that the initial crack location in Potyondy's
simulations was modeled at 0.45 inch away from the intersection of the skin and
stringer due to limitations in the previous version of the FRANC3D program. Fig-
ures 7.15 and 7.16 show the computed stress intensity factors at the right crack
tip in comparison with [21] and [106, 108], respectively. From these results, we
conclude:

� The applied axial force used to model the longitudinal stress caused by a
closed cylinder has little in
uence on the computed stress intensity factors.
This can be seen from the computed values shown in Figure 7.15 at zero
crack extension; two numerical simulations at this stage basically represent
the same boundary conditions and crack con�guration except an axial force
was applied in the current model.

� The fact that the kinematic boundary conditions were not altered during
crack growth in the previous studies has a mild a�ect on the crack trajectory
prediction and stress intensity factor computation. In the previous studies,
the kinematic boundary conditions used in the lowest level in the hierarchy
were obtained from a global model with an initial 5.0 inch crack. We can
certainly conclude that the driving force for this case would be less than the
one with updated boundary conditions as the crack grows. This is properly
re
ected on the computed KI values shown both in Figures 7.15 and 7.16.
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Figure 7.14: Comparisons between predicted and measured crack trajectories
(isotropic directional criterion with various magnitudes of rc).

The issue seems to have little e�ect on the computed values of KII , since
they remain more or less the same for all cases. This leads to a lower ratio of
KII=KI in the current model with updated boundary conditions. As a result,
more shallow crack trajectories are predicted in the present study. Neverthe-
less, the computed fracture parameters are comparable with previous results;
thus, a similar fatigue life is anticipated.

7.2.6 Concluding Remarks for Curvilinear Crack Growth

Simulation in Narrow Body Fuselage Panel

Curvilinear crack growth in a generic narrow body fuselage was studied. Com-
parisons with experimental measurements suggest that the fracture toughness or-
thotropy plays an important role in predicting the early crack growth trajectories.
The subsequent crack growth after the initial crack de
ection followed a trajectory
where the local stress states are of a Mode I type. Thus, like crack growth in DCB
specimens, crack turning and 
apping as the crack approaches the tear strap is
highly related to the T -stress.
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Figure 7.15: Computed stress intensity factors versus half crack extension. The
hollow and solid markers denote the computed stress intensity factors
from the current isotropic prediction with rc = 0 and those from Chen
et al. [21], respectively.
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Figure 7.16: Computed stress intensity factors versus half crack extension. The
hollow and solid markers denote the computed stress intensity fac-
tors from the current isotropic prediction with rc = 0 and those from
Potyondy et al. [106, 108], respectively.
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The predicted results based on the proposed methodology show the potential
to characterize curvilinear crack growth, but further studies as discussed in Sec-
tion 7.2.4.2 need to be conducted to fully assess its applicability as part of a damage
tolerance methodology.

7.3 Discussion: Elastic-Plastic Curvilinear Crack

Growth and Residual Strength Prediction

The above curvilinear crack growth simulations explicitly assume that the crack is
grown under small scale yielding conditions. To simulate elastic-plastic curvilinear
crack growth, one can use the predicted curvilinear crack path as the prede�ned
crack path and stable crack growth and residual strength analyses can be performed
accordingly. The procedure was used in Chen et al. [21, 20] to study the trajectory
e�ect on residual strength prediction.

A more rigorous approach is to use a directional criterion based on the current
elastic-plastic states at crack tips directly. A procedure for mapping the state
variables from one �nite element mesh to another is then performed as the crack
propagates. A plane stress, non-self-similar elastic-plastic crack growth simulation
based on the CTOD directional criterion discussed in Section 5.4.2 in conjunction
with the CTOA crack growth criterion has recently been implemented [62]. The
predicted results are comparable to those observed in the Arcan fracture tests.
Future work is needed to assess the applicability of the mapping algorithm and
direction criterion to fuselage structures under stable tearing.

7.4 Summary

The directional criteria developed in Chapter 5 were used to predict curvilinear
crack growth in coupon tests and in full-scale fuselage panel tests. The predicted
trajectories were in good agreement with those observed in the tests.

The in
uence of various parameters on the crack trajectory prediction was
studied. Both T -stress and fracture orthotropy were found to be essential to predict
the observed paths. The proposed methodology shows its potential to predict crack
turning and 
apping that can be used as part of a damage tolerance methodology.



Chapter 8

Summary, Conclusions, and

Recommendations for Future

Work

This chapter summarizes the contributions of this thesis, draws conclusions, and
where appropriate, provides recommendations for future work.

This dissertation begins with a description of aging aircraft problems faced
by the aircraft community. Aging of aircraft may signi�cantly reduce structural
integrity and residual strength below an acceptable level. This concern serves
as the primary motivation for the dissertation. The objective is to develop an
accurate structural analysis methodology and a useful and usable software tool for
predicting the structural integrity and residual strength of pressurized, thin-shell
structures.

Background material related to structural integrity of aircraft fuselages and
e�ective simulations of arbitrary crack growth is discussed in Chapter 1. This
serves as a departing point to study simulations of fracturing processes in thin-
shell structures. The dissertation is then divided into two parts to facilitate the
discussion. Chapters 2 through 4 deal with the crack tip opening angle (CTOA)
fracture criterion obtained from coupon tests to the prediction of fracture behavior
and residual strength of built-up aircraft fuselages. Chapters 5 through 7 discuss
relevant issues for crack trajectory prediction methodologies to improve structural
integrity of airframes. Summaries, conclusions, and recommendations for future
work of each part are presented below.
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8.1 Part One: Elastic-Plastic Crack Growth Sim-

ulation and Residual Strength Prediction

8.1.1 Chapter 2: Theory for CTOA-Driven Elastic-Plastic

Crack Growth and Residual Strength Analysis

Various fracture mechanics methods for simulating elastic-plastic crack growth and
predicting residual strength of thin-sheet metallic structures are reviewed and cri-
tiqued in Chapter 2. The fracture analysis methods include linear elastic fracture
mechanics (LEFM) and elastic plastic fracture mechanics (EPFM) versions of KR,
GR, JR, �R, T

�
R, and CTOA using two-dimensional and three-dimensional anal-

yses. Among the methods, the CTOA fracture criterion with three-dimensional
elastic-plastic analyses is found to be superior because of its relative independence
of the geometry of the structure, the length of the crack, and the presence of mul-
tiple cracks. Elastic-plastic crack growth, link-up of multiple cracks, and residual
strength analyses using the CTOA fracture criterion are discussed.

8.1.2 Chapter 3: Residual Strength Analysis of a Flat Panel

with Self-Similar Elastic-Plastic Crack Growth

In Chapter 3, numerical simulations of 
at panel tests are conducted by using thin-
shell �nite element analyses. The CTOA fracture criterion is used to characterize
elastic-plastic crack growth. Two sets of fracture tests are simulated: one with a
single crack but di�erent widths and the other with multiple cracks.

Predicted results of the 
at panel simulations with a single crack show two dis-
tinct failure phenomena. For small specimens, plastic zones reach the free bound-
ary and the limit load is attained due to net section yielding. For large speci-
mens, plastic zones are well con�ned by the elastic region and residual strength is
reached due to fracture instability. Results of predicted residual strength are com-
parable to experimental measurements. Yet as the width of the panel increases,
the relative di�erence between experimental measurements and numerical predic-
tions increases. This discrepancy is associated with the three-dimensional nature
of the stresses around the crack tip, a result of constraint e�ects due to the �nite
thickness of the panels. A plane strain core concept is proposed to incorporate the
three-dimensional constraint e�ects into two-dimensional as well as thin shell anal-
yses. Predicted results with the plane strain core follow those of three-dimensional
analyses and experimental measurements for small and large panels.

Predicted residual strength of small 
at panels with multiple cracks agrees well
with experimental measurements. A loss of residual strength due to the presence
of multiple small cracks is observed.
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8.1.3 Chapter 4: Residual Strength Analysis of Fuselage

Structures with Self-Similar Crack Growth

Chapter 4 examines the feasibility and validity of the analysis methodology to
predict residual strength of pressurized fuselage structures that are subjected to
widespread fatigue damage (WFD). The �rst part of the chapter uses a relatively
simple built-up con�guration to examine the e�ect of lead crack sizes, multi-site
damage (MSD), and material thinning due to corrosion damage. Predicted results
indicate a 21.8 to 28.0% loss of residual strength due to the presence of small MSD.
Coupling of MSD and corrosion damage leads to the most severe damage scenario.

The second part of the chapter describes analyses of fuselage panels tested in a
wide body, pressure test �xture. The objective is to validate the analysis method-
ology by direct comparison of numerical and experimental results. A global-local
hierarchical modeling strategy is used to analyze the panel tests. This modeling
strategy allows one to obtain su�cient accuracy of computed values with reason-
able computer resources.

Predicted stress distributions in the vicinity of the lap joint are compared with
strain gage readings. Major results from the strain gage comparison are:

� For global and local models of about the same coarse mesh density, the pre-
dicted results converge quickly and agree with experimental measurements.

� Results with a much higher mesh density that is suitable for stable crack
growth analysis disagree with the rest of the numerical predictions and ex-
perimental measurements. The discrepancy is related to the idealized rep-
resentation of the two-noded spring element for the rivet connection. The
problem is e�ectively overcome by generating distributed connections be-
tween the two-noded spring element and the surrounding shell elements.

Elastic-plastic crack growth analyses using the CTOA fracture criterion are
conducted. Numerical results for the case with and without MSD are compared
to experimental observations. Two key factors are found to be crucial for accurate
prediction of stable crack growth and residual strength of the wide body panel
tests. One is to incorporate the residual plastic deformation left by the fatigue
crack growth, and the other is to consider the failure of other structural elements
during stable crack growth. The speci�c highlights are:

� The residual plastic deformation or the plastic wake from fatigue crack
growth has a strong e�ect on stable crack initiation but a mild e�ect on
residual strength prediction. Neglecting plastic wake e�ect leads to a totally
erroneous prediction of the early stable crack growth.

� The breakage of the inner tear strap, categorized as possible failure of other
structural elements during stable crack growth, is crucial to residual strength
prediction. For all the analyses conducted, the occurrence of the broken tear
strap reduces the predicted residual strength by 24% to 30%.
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Both observed and predicted results of the wide body panel tests again show
substantial reduction of residual strength due to the occurrence of MSD.

8.1.4 Recommendations for Future Work

For cracks in a pressurized fuselage, the out-of-plane deformation or bulging at
the crack edges is an essential characteristic feature of the displacement �elds.
The current analysis methodology assumes that the same critical CTOA deter-
mined from 
at panel tests with guide plates su�ces to characterize the fracturing
processes. To fully justify this assumption, laboratory tests that generate the out-
of-plane deformation during stable crack growth need to be conducted1. Numerical
simulations of these laboratory tests using geometrically and materially nonlinear
thin-shell and three-dimensional crack growth analyses will shed new light on the
possible invariance of the CTOA fracture criterion to crack bulging.

Constraint e�ects due to �nite thickness of the panels are currently incorpo-
rated into thin-shell �nite element analyses by an ad-hoc fashion, that is, using
a plane strain core concept along the tearing crack path. Fully three-dimensional
analyses or mixed thin-shell and three-dimensional analyses can automatically cap-
ture the three-dimensional constraint e�ect and eliminate the need for the plane
strain core. A mixed model consisting of thin shell and three-dimensional ideal-
izations as illustrated in Figure 8.1 seems to be a very attractive approach. Using
this approach, fracture behavior around the crack tip region can be described ac-
curately by three-dimensional analyses while thin shell idealizations may apply to
the remote regions where the through thickness e�ect can be ignored.

The current model does not faithfully represent crack growth in the vicinity
of rivets. Distributed connections may be adequate to represent load transfer
through the rivets, but may not have su�cient accuracy to characterize fracturing
processes. Further laboratory fracture tests and analyses of various lap-jointed
con�gurations need to be conducted to quantify its e�ect on stable crack growth
and residual strength prediction.

The current analysis procedures of incorporating the residual plastic deforma-
tion for stable tearing do not include the e�ect of crack face contact. This leads
to a much higher crack-opening pressure in comparison with 2D plane stress re-
sults and laboratory observations. Further study is needed to quantify its e�ect
on residual strength prediction.

Widespread fatigue damage (WFD) has two subsets: multi-site damage (MSD)
and multi-element damage (MED). The e�ect of MSD on residual strength can be
analyzed and accurately predicted by the current methodology. The MED is yet to
be explored rigorously. Also, the similar scenario including static or dynamic failure
of other structural elements during stable crack growth needs further investigation.
A proper mechanism to initiate and propagate damage in other structural elements

1The MT specimen with the width larger than 24 inch but without guide plates
seem to be a plausible candidate.
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Figure 8.1: Illustration of mixed modeling of thin shell and 3D solids.

needs to be included in stable crack growth analyses.
Material thinning due to corrosion damage that may occur in aging aircraft is

modeled through a uniform thickness reduction over the skin at the lap joint. More
detailed analyses are needed to assess its applicability in characterizing corrosion
damage.

Finally, the methodology developed herein is mainly for thin-sheet metallic
structures. Its applicability to thick, heavily loaded structures (for example, wings)
or to di�erent materials (for example, composites) is yet to be determined.

8.2 Part Two: Curvilinear Crack Growth Simu-

lation

8.2.1 Chapter 5: Theory for Curvilinear Crack Growth in

Planar and Thin Shell Structures

This chapter begins with the motivation for using the crack turning phenomenon to
improve the structural integrity of fuselage structures. To predict a crack trajectory
that is not known a priori, a criterion for predicting the crack propagation direction
is required.

The maximum tangential stress theory is used as a starting point to evaluate
the direction of crack growth. Full stress and displacement �elds in two-dimensions
and asymptotic �elds in thin plates subjected to bending are outlined.

The crack growth direction criterion based on the two-dimensional, linear elas-
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tic crack tip �elds is assumed to be su�cient to handle thin shell problems under
the LEFM conditions. Singular as well as non-singular constant stress �elds are
included in evaluating the tangential stress near the crack tip. A directional crite-
rion based on the maximum tangential stress up to the order of the T -stress term
is derived. The speci�c highlights include:

� The predicted propagation angle is determined based on rc, KI , KII , and
and T . A predicted propagation angle diagram is presented using a non-
dimensional parameter T where T � (8T

p
2�rc)=(3KI).

� Under pure Mode-I and positive T -stress conditions, the crack path instabil-
ity will occur when rc > (9K2

I )=(128�T
2).

� Under general mixed-mode conditions, the criterion predicts a bigger prop-
agation angle under positive T -stress and a smaller angle under negative
T -stress. The criterion reduces to the Erdogan and Sih criterion when T =
0 or rc = 0.

The criterion is then extended to include the e�ect of fracture toughness or-
thotropy. A simple elliptical function is used to characterize the anisotropic frac-
ture resistance in di�erent material orientations. The e�ect of fracture toughness
orthotropy ratio and the material orientation angle on the predicted propagation
angle is examined.

The rest of the chapter examines possible extensions of the current crack growth
direction criterion to handle geometrically and materially nonlinear problems.

For elastic deformations of arbitrary magnitude, the extensions rely on �nding
the Lagrangian counterparts of conservative integrals, well-de�ned under elastic
states with in�nitesimal deformations, in the context of �nite elastic deformations.
The fracture parameters are then related to these conservative integrals.

For elastic-plastic problems two directional criteria are examined: one based
on the HRR �elds and the other based on the crack tip opening displacement
(CTOD) concept. The study concludes that neither the HRR type extension of
the maximum tangential stress theory nor the CTOD based directional criterion is
currently su�cient to fully characterize the direction of elastic-plastic crack growth.

8.2.2 Chapter 6: Numerical Evaluation of T -Stress

Numerical methods to obtain accurate T -stress for two-dimensional as well as thin
shell problems are the main theme of Chapter 6. The speci�c highlights are:

� Two types of path independent integrals for T -stress evaluations are pre-
sented: one based on the Betti-Rayleigh reciprocal theorem and the other on
Eshelby's energy momentum tensor. The analytical and numerical equiva-
lence between the two is found.
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� A novel error estimator for T -stress is proposed to quantify and assess the
accuracy of computed values. Speci�cally, it is found that the error of the
computed T -stress is proportional to the ratio of stress intensity factor di-
vided by the square root of the characteristic dimension of the integration
domain where the path independent integral is evaluated.

� Numerical accuracy in evaluating T -stress using the path independent inte-
gral method is assessed by highly accurate two-dimensional p- and hp-version
adaptive �nite element analyses.

8.2.3 Chapter 7: Curvilinear Crack Growth Simulations

Chapter 7 analyzes curvilinear crack growth in double cantilever beam (DCB)
specimens and in full-scale narrow body fuselage panel tests. The speci�c highlights
for curvilinear crack growth in the DCB specimens are:

� Observations in the fracture tests indicate that the crack tends to turn away
from its initial crack tip under pure Mode I conditions. The crack growth
directional criterion, incorporating the T -stress e�ect, is capable of capturing
the essence of crack turning under such circumstance. The predicted results
with rc = 0:09 inch best correlate the experimental data for stable tearing.
The predicted results with rc = 0:06 inch best correlate the experimental
data for fatigue crack growth.

� The fracture toughness orthotropy is introduced to explain the di�erence
between the measured crack paths in the L-T and T-L orientations. The
orthotropic directional criterion shows a promising nature to correlate the
experimental data.

The speci�c highlights for curvilinear crack growth in the full-scale narrow body
fuselage panel tests are:

� T -stress has a very mild in
uence on the early crack trajectory prediction
because of its small magnitude. But as the crack approaches the tear strap,
T -stress increases and plays an important role in the crack turning prediction.
For the case with rc = 0:09 inch, a sharp turning caused by T -stress is
predicted as the crack approaches the tear strap.

� The fracture toughness orthotropy has a strong e�ect on the early crack tra-
jectory prediction. The predicted crack trajectory, with 10% higher fracture
toughness in the T than in the L direction of propagation, agrees well with
that from the experimental measurements, before the crack approaches the
tear strap.
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8.2.4 Recommendations for Future Work

The current methodology assumes that the maximum tangential stress directional
criterion developed under the two-dimensional, LEFM framework can be directly
applied to thin shell problems. Further crack trajectory study of fracture coupon
tests and full-scale fuselage panel tests is needed to fully justify the assumption.

A rigorous elastic-plastic directional criterion for non-self-similar stable crack
growth simulations is yet to be found. A procedure that maps the state variables
from one �nite element mesh to another as the crack propagates is yet to be
implemented into the FRANC3D/STAGS software program.

Accurate stress intensity factor and T -stress evaluations as the crack approaches
the tear straps are crucial to predict the crack turning. In the current study, the
convergence study was conducted to ensure the accuracy of fracture parameter
evaluations. Further study on adaptive and higher order shell �nite element anal-
yses may help to improve the accuracy of numerical computation. Other numerical
methods, for example, path independent integrals for geometrically nonlinear shells
may also help to improve the accuracy of fracture parameter evaluations.

The physical meaning of the parameter rc is yet to be found and the appropriate
experimental method to measure rc is yet to be determined. Further understanding
of fracture behavior at the meso- or micro-scale may shed new light on rc, and
furthermore, the crack growth directional criterion.
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The objectives were to create a capability to simulate curvilinear crack growth and ductile tearing in aircraft fuse-
lages subjected to widespread fatigue damage and to validate with tests. Analysis methodology and software pro-
gram (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically, while
insuring continuous airworthiness, and to design more damage-tolerant aircraft for the next generation. Simulations
of crack growth in fuselages were described. The crack tip opening angle (CTOA) fracture criterion, obtained from
laboratory tests, was used to predict fracture behavior of fuselage panel tests. Geometrically nonlinear, elastic-plas-
tic, thin shell finite element crack growth analyses were conducted. Comparisons of stress distributions, multiple
stable crack growth history, and residual strength between measured and predicted results were made to assess the
validity of the methodology. Incorporation of residual plastic deformations and tear strap failure was essential for
accurate residual strength predictions. Issue related to predicting crack trajectory in fuselages were also discussed.
A directional criterion, including T-stress and fracture toughness orthotropy, was developed. Curvilinear crack
growth was simulated in coupon and fuselage panel tests. Both T-stress and fracture toughness orthotropy were ess-
tential to predict the observed crack paths. Flapping of fuselages were predicted. Measured and predicted results
agreed reasonable well.
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